Discussion: Conjoint Controversy

Kosuke Imai
Harvard University
The Annual Summer Meeting of the
Society for Political Methodology
July 17, 2020

What Is the Controversy All About?

- Average Marginal Component Effect (AMCE)

$$
\mathbb{E}\left\{Y_{i}\left([1 B C],\left[A^{\prime} B^{\prime} C^{\prime}\right]\right)-Y_{i}\left([0 B C],\left[A^{\prime} B^{\prime} C^{\prime}\right]\right)\right\}
$$

Average difference in the probability of choosing candidate $A B C$ over candidate $A^{\prime} B^{\prime} C^{\prime}$ when changing A from 0 to 1

- Abramson, Kocak, and Magazinnik (AKM)
(1) AMCE does not reflect majority preferences
(2) AMCE combines direction and intensity of preferences

Rank	V 1	V 2	V 3	V 4	V 5
1.	$M R$	$M R$	$M R$	$F D$	$F D$
2.	$F R$				
3.	$M D$				
4.	$F D$	$F D$	$F D$	$M R$	$M R$

Table 2-Preferences over candidate profiles

- majority prefers Male over Female regardless of party (Democrat and Republican)
- AMCE (Male vs. Female) <0
- V1 - V3 care more about party
- $V 4-V 5$ care more about gender

Bansak, Hainmueller, Hopkins, and Yamamoto (BHHY)

- Two interpretations of the AMCE
(1) AMCE as an average rank = Borda rule (AKM)
(2) AMCE as an average difference in voteshare \rightsquigarrow original interpretation
- All of these claims are true:
- No disagreement on what AMCE is and is not
- Disagreement is about whether AMCE is useful for electoral studies

AMCE is Based on Averages

- Three averages define the AMCE

$$
\mathbb{E}\left\{Y_{i}\left([1 B C],\left[A^{\prime} B^{\prime} C^{\prime}\right]\right)-Y_{i}\left([0 B C],\left[A^{\prime} B^{\prime} C^{\prime}\right]\right)\right\}
$$

(1) other attributes of one's own $B C$
(2) attributes of one's opponent $A^{\prime} B^{\prime} C^{\prime}$
(3) respondents $Y_{i}\left([a b c],\left[a^{\prime} b^{\prime} c^{\prime}\right]\right)$

- Choice of profile distributions matter (de la Cuesta, Egami \& Imai, in-press)

Presidential Candidates

- Do not use uniform distributions without justification!

Interactions, Interactions, Interactions

- Conjoint is all about interactions
- no interaction \rightsquigarrow "Do you prefer male or female candidates?"
- taste-based vs. statistical discrimination
- Two kinds of interactions may interact: attributes and respondent characteristics
- If there is no interaction,
- ACME is invariant to the profile distributions
- No disagreement between AKM and BHHY
- BHHK: "Beyond AMCEs"
(1) Probability of winning for a candidate with $A=a$:

$$
\mathbb{E}\left[1_{\left\{\mathbb{E}_{Y}\left[Y_{i}\left([a B C],\left[A^{\prime} B^{\prime} C^{\prime}\right)\right)\right]>0.5\right\}}\right]
$$

(2) Fraction of voters preferring a candidate with $A=a$:

$$
\mathbb{E}_{Y}\left[1_{\left\{\mathbb{E}\left[Y_{i}\left([a B C],\left[A^{\prime} B^{\prime} C^{\prime}\right]\right)\right]>0.5\right\}}\right] \neq \mathbb{E}_{Y}\left[1_{\left\{\mathbb{E}\left[Y_{i}([a B C],[A B C])\right]>0.5\right\}}\right]
$$

- $A K M+S$ estimates the $2 n d$ quantity (AFCP) using machine learning
- Both of these quantities require modeling of preferences

Modeling Multidimensional Preferences

- (Saturated) Random utility model: $U_{i}(a b c) \sim a * b * c$
- With a typical sample size, three-way or higher order interactions can be ignored
- ANOVA with sum-to-zero constraints

$$
\begin{aligned}
& U_{i}(A B C)=\mu+\sum_{a} \beta_{a} 1_{\{A=a\}}+\sum_{b} \beta_{b} 1_{\{B=b\}}+\sum_{c} \beta_{c} 1_{\{C=c\}}+ \\
& \sum_{a b} \beta_{a b} 1_{\{A=a, B=b\}}+\sum_{b c} \beta_{b c} 1_{\{B=b, C=c\}}+\sum_{c a} \beta_{c a} 1_{\{A=a, C=c\}}+\epsilon_{i}(A B C)
\end{aligned}
$$

where, for example, β_{a} is AMCE and $\beta_{a b}$ is AMIE

- Forced choice:

$$
\begin{aligned}
& Y_{i}\left([A B C],\left[A^{\prime} B^{\prime} C^{\prime}\right]\right) \\
= & 1_{\left\{U_{i}(A B C)>U_{i}\left(A^{\prime} B^{\prime} C^{\prime}\right)\right\}} \\
= & 1_{\left\{\sum_{a} \beta_{a}\left[1_{\{A=a\}}-1_{\left\{A^{\prime}=a\right\}}\right]+\cdots+\sum_{a b} \beta_{a b}\left[1_{\{A=a, B=b\}}-1_{\left\{A^{\prime}=a, B^{\prime}=b\right\}}\right]+\cdots+\epsilon_{i}^{*}>0\right\}}
\end{aligned}
$$

- Linear probability, logistic regression models with regularization

Concluding Remarks

- The debate between AKM and BHHY has clarified:
(1) What AMCE is and is not
(2) Importance of profile distributions and interactions
(3) Potential roles of alternative quantities of interest
(3) Use of machine learning for modeling multidimensional preferences
- The only disagreement is NOT methodological:
- Which quantity of interest is more appropriate?
- Must be judged for a given application
- Future research of interest
- Estimation of heterogeneous preferences (initiated by $\mathrm{AMK}+\mathrm{S}$)
- Hypothesis testing using machine learning

