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Introduction Overview

Overview

Use of randomized experiments for causal inference.
Missing outcomes threaten the validity of causal inference.
A growing literature on the topic:

Method of bounds (e.g., Horowitz and Manksi, 2000).
Semiparametric methods (e.g., Scharfstein et al. 1999).
Ignorability (e.g., Yau and Little, 2001).
Latent ignorability (e.g., Frangakis and Rubin, 1999).

Nonignorable missing outcomes:
Political science: self-reported voting behavior.
Economics: self-reported income.
Medicine: self-reported health status.

The research project:
Alternative identification and estimation strategies.
With and without noncompliance.
New sensitivity analyses.
Applications in political science, psychology, and public health.
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Introduction A Motivating Example

A Motivating Example: German Election Experiment

Internet randomized experiment during the 2005 election.
Treatment group: asked if they intend to vote, whether in person or
by mail, and the main obstacle they face.
Control group: asked if they intend to vote, but not how.
Outcome: self-reported turnout.

Psychological theory on intentions (e.g., Gollwitzer, 1999):
Goal intentions: “I am going to vote!”
Implementation intentions: “Since I will be busy on the election day,
I am going to vote by mail!”
Theoretical and empirical evidence: implementation intentions can
more effectively increase the probability of achieving one’s goal by
automating goal implementation through anticipatory decisions
(e.g., drug intake, breast self-examination, regular exercises).
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Introduction A Motivating Example

Data and Nonresponse Problem

Data:

fraction birth year fraction of nonresponse
size of female (mean) vote intenders rate

treatment 548 0.55 1970.9 0.94 0.21
control 572 0.54 1971.1 0.93 0.25

Different nonresponse rates (p-value 11% using χ2 test).

Possibility of nonignorable nonresponse: the act of voting itself
may increase their interest in politics and hence the probability of
their participation in the post-election survey.

The observed turnout: 0.83 for the treated and 0.81 for the control.
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Standard Randomized Experiments Setup

Framework for Standard Randomized Experiments

Causal inference via potential outcomes (e.g., Holland 1986).
Experimental unit: i = 1, 2, . . . , n.
Binary treatments: Ti ∈ {0, 1}.
Potential outcomes: Yi(Ti).
Observed outcome: Yi = TiYi(1) + (1− Ti)Yi(0).
Potential response indicators: Ri(Ti).
Observed response indicator: Ri = TiRi(1) + (1− Ti)Ri(0).
Pre-treatment covariates: Xi .

No interference among units (Cox 1958; Rubin 1990).

Randomized treatment: (Yi(1), Yi(0), Ri(1), Ri(0)) ⊥⊥ Ti for all i .
Estimands:

Average Treatment Effect (ATE):
τATE ≡ E [Yi(1)− Yi(0)] = E [Yi | Ti = 1]− E [Yi | Ti = 0].
Conditional Average Treatment Effect (CATE):
τCATE ≡ 1

n

∑n
i=1 E [Yi(1)− Yi(0) | Xi ].
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Standard Randomized Experiments Identification and Estimation Strategies

Identification Problem in the Binary Case

Assume Yi(0), Yi(1) ∈ {0, 1}.
Define,

pjk ≡ Pr(Yi = 1 | Ti = j , Ri = k),

πjk ≡ Pr(Ti = j , Ri = k),

Then, the ATE can be written as,

τATE =
p10π10 + p11π11

π10 + π11
− p00π00 + p01π01

π00 + π01
,

where p00 and p10 are not identifiable from the data.
Since pj0 ∈ [0, 1], the sharp bounds (Horowitz & Manski, 2000)
are given by,

τATE ∈
[

p11π11(π00 + π01)− (π00 + p01π01)(π10 + π11)

(π10 + π11)(π00 + π01)
,

(π10 + p11π11)(π00 + π01)− p01π01(π10 + π11)

(π10 + π11)(π00 + π01)

]
.
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Standard Randomized Experiments Identification and Estimation Strategies

Identification Strategies

Ignorability Assumption (Little & Rubin, 1987): the outcome
variable is missing at random (MAR) given the treatment status
and observed covariates. For j ∈ {0, 1} and x ∈ X ,

Pr(Ri(j) = 1 | Ti = j , Yi(j) = 1, Xi = x)

= Pr(Ri(j) = 1 | Ti = j , Yi(j) = 0, Xi = x),

The proposed assumption: missing-data mechanism directly
depends on the realized value of the outcome variable itself, but is
conditionally independent of the treatment status.
Reasonable if the treatment does not directly cause nonresponse.
Nonignorability (NI) Assumption : For k ∈ {0, 1} and x ∈ X ,

Pr(Ri(j) = 1 | Ti = 0, Yi(0) = k , Xi = x)

= Pr(Ri(j) = 1 | Ti = 1, Yi(1) = k , Xi = x).

Identification of the ATE is established via Bayes rule
(PROPOSITION 1).
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Standard Randomized Experiments Identification and Estimation Strategies

Inference under the Nonignorability Assumption

1 Without observed covariates (given a particular value of a
covariate), the ML estimator of the ATE is available in a closed
form (PROPOSITION 2).

2 A parametric approach with the covariates (estimation of CACE):
Specify the following parametric models (e.g., logistic regression),

qj(x) = Pr(Yi = 1 | Ti = j , Xi = x),

rjk (x) = Pr(Ri = 1 | Ti = j , Yi = k , Xi = x),

Complete-data likelihood function:

n∏
i=1

[
r·1(Xi)

Ri{1− r·1(Xi)}1−Ri
]Yi [r·0(Xi)

Ri{1− r·0(Xi)}1−Ri
]1−Yi

×
[
q1(Xi)

Yi{1− q1(Xi)}1−Yi
]Ti [q0(Xi)

Yi{1− q0(Xi)}1−Yi
]1−Ti

,

where r·k (x) = r1k (x) = r0k (x) for x ∈ X under the NI assumption.
Computation: EM algorithm, Gibbs sampler with prior distributions.
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Standard Randomized Experiments Identification and Estimation Strategies

Multi-valued Outcome and Treatment Variables

Setup:
J-valued treatment variable: Ti ∈ T ≡ {0, 1, . . . , J − 1}.
K -valued outcome variable: Y (Ti) ∈ Y ≡ {0, 1, . . . , K − 1}.
Average Treatment Effects: τ

(j)
ATE ≡ E [Yi(j)− Yi(j − 1)].

The NI assumption:

Pr(Ri(j) = 1 | Ti = j , Yi(j) = k , Xi = x)

= Pr(Ri(j
′) = 1 | Ti = j ′, Yi(j

′) = k , Xi = x).

Identification: there are J(K − 1) unknown probabilities while the
assumption implies J(J − 1)K/2 constraints. Thus, the
identification is possible so long as J ≥ 3− 2/K .
A general parametric approach: For example, we may assume,

Pr(Ri = 1 | Ti = j , Yi = y , Xi = x) =
exp(α + βy + γx)

1 + exp(α + βy + γx)
,

for every j ∈ T , x ∈ X , and y ∈ Y.
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Standard Randomized Experiments Sensitivity Analysis

Sensitivity Analysis with No Covariate

Motivation: since neither MAR nor NI assumptions are directly
verifiable from the data, it is of interest to examine the sensitivity
of one’s conclusion to the key identifying assumption.
Sensitivity analysis based on the following parameter,

θNI
k ≡ Pr(Ri(1) = 1 | Ti = 1, Yi(1) = k)

Pr(Ri(0) = 1 | Ti = 0, Yi(0) = k)
,

for k = 0, 1 where the range of the parameter is given by,

(1− p11)π11

(1− p11)π11 + π10
≤ θNI

0 ≤ (1− p01)π01 + π00

(1− p01)π01
,

p11π11

p11π11 + π10
≤ θNI

1 ≤ p01π01 + π00

p01π01
.

τATE is now a function of θNI
k and identifiable parameters.

See how τATE varies along with the value of θk .
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Standard Randomized Experiments Sensitivity Analysis

Sensitivity Analysis with Observed Covariates

Consider the following logistic regression:

Pr(Ri = 1 | Ti = j , Yi = k , Xi = x) =
exp(αjk + βx)

1 + exp(αjk + βx)
,

The sensitivity analysis can be based on the odds ratio for the
conditional probabilities of missingness,

ΓNI
k =

r1k (x ; η1k )/[1− r1k (x ; η1k )]

r0k (x ; η0k )/[1− r0k (x ; η0k )]
= exp(α1k − α0k ),

where ΓNI
k ≥ 0 for k ∈ {0, 1}.

Computation: EM algorithm with the following constraint
α1k = log ΓNI

k + α0k , or Bayesian analysis incorporating this
constraint.
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Standard Randomized Experiments Analysis of the German Election Study

Analysis of the German Election Experiment

Model:
1 Turnout model: qj(Xi) = Pr(Yi = 1 | Ti = j , Xi = x) =

exp(αj + x>β)/[1 + exp(αj + x>β)].
2 Response model: r·k (Xi) = Pr(Ri = 1 | Yi = k , Xi = x) =

exp(γk + x>δ)/[1 + exp(γk + x>δ)].

ML estimates (using EM algorithm) with bootstrap standard errors.

Results:
point standard 95% CI

estimate error lower upper
Missing at Random (MAR)

No covariate 0.021 0.026 −0.030 0.073
With covariates 0.014 0.025 −0.035 0.063

Nonignorable (NI)
No covariate 0.035 0.051 −0.049 0.119
With covariates 0.046 0.036 −0.011 0.129
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Standard Randomized Experiments Analysis of the German Election Study

Sensitivity Analysis without Covariates
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Standard Randomized Experiments Analysis of the German Election Study

Sensitivity Analysis with Covariates

Results under the NI assumption:

ΓNI
1 = 1

3 ΓNI
1 = 1 ΓNI

1 = 3

0.046 0.003 −0.075
ΓNI

0 = 1
3 (0.027) (0.020) (0.027)

[−0.006, 0.100] [−0.032, 0.046] [−0.128, −0.024]
0.045 0.046 0.004

ΓNI
0 = 1 (0.029) (0.036) (0.039)

[−0.015, 0.097] [−0.011, 0.129] [−0.073, 0.080]
0.134 0.047 0.046

ΓNI
0 = 3 (0.029) (0.033) (0.028)

[0.080, 0.192] [−0.020, 0.111] [−0.009, 0.101]

The ML estimates appear to be somewhat sensitive, but the
scenarios corresponding to (ΓNI

0 , ΓNI
1 ) = (3, 1/3), (1/3, 3) may be

highly unlikely.
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Randomized Experiments with Noncompliance Setup

Randomized Experiments with Noncompliance

Randomized “encouragement” design:
Binary encouragement: Zi ∈ {0, 1}.
Potential binary treatments: Ti(Zi) ∈ {0, 1}.
Observed treatment: Ti = ZiTi(1) + (1− Zi)Ti(0).
Potential outcomes: Yi(Zi).
Observed outcome: Yi = ZiYi(1) + (1− Zi)Yi(0).
Potential response indicators: Ri(Zi).
Observed response indicator: Ri = ZiRi(1) + (1− Zi)Ri(0).

Randomization of encouragement:

(Yi(1), Yi(0), Ti(1), Ti(0), Ri(1), Ri(0)) ⊥⊥ Zi ,

Intention-To-Treat (ITT) effect: τITT ≡ E [Yi(Ti(1), 1)− Yi(Ti(0), 0)].
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Randomized Experiments with Noncompliance Setup

Instrumental Variables (Angrist, Imbens & Rubin,
1996)

Noncompliance
Complier: Ti(1) = 1 and Ti(0) = 0.
Noncomplier:

1 Always-taker (Ci = c): Ti(1) = Ti(0) = 1.
2 Never-taker (Ci = n): Ti(1) = Ti(0) = 0.
3 Defier (Ci = d): Ti(1) = 0 and Ti(0) = 1.

Assumptions:
1 Monotonicity (no defier): Ti(1) ≥ Ti(0).
2 Exclusion restriction for noncompliers: Yi(1) = Yi(0) for Ci = a, n

(i.e., zero ITT effect for always-takers and never-takers).

Complier Average Causal Effect (IV estimand):

τCACE ≡ E [Yi(1)− Yi(0) | Ci = c] =
E [Yi(1)− Yi(0)]

E [Ti(1)− Ti(0)]
.
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Randomized Experiments with Noncompliance Identification and Estimation Strategies

Identification Strategies

Ignorability (Yau & Little, 2001): For j = 0, 1 and l = 0, 1,

Pr(Ri(l) = 1 | Yi(l) = 1, Ti(l) = j , Zi = l , Xi = x)

= Pr(Ri(l) = 1 | Yi(l) = 0, Ti(l) = j , Zi = l , Xi = x).

Latent Ignorability (Frangakis & Rubin, 1999):
1 Latent ignorability: For l = 0, 1 and t ∈ {c, n, a},

Pr(Ri(l) = 1 | Yi(l) = 1, Zi = l , Ci = t , Xi = x)

= Pr(Ri(l) = 1 | Yi(l) = 0, Zi = l , Ci = t , Xi = x).

2 Compound exclusion restriction for noncompliers:
Yi(0) = Yi(1), and Ri(1) = Ri(0), for Ci = n, a.

Nonignorability : For j = 0, 1, and k = 0, 1,

Pr(Ri(1) = 1 | Ti(1) = j , Yi(1) = k , Zi = 1, Xi = x)

= Pr(Ri(0) = 1 | Ti(0) = j , Yi(0) = k , Zi = 0, Xi = x).
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Randomized Experiments with Noncompliance Identification and Estimation Strategies

Theoretical Results in the Binary Case

Apply the same analytical strategy as before.

Define,

pjkl ≡ Pr(Yi = 1 | Ti = j , Ri = k , Zi = l),

πjkl ≡ Pr(Ti = j , Ri = k , Zi = l).

Rewrite the ITT effect as,

τITT =

∑1
j=0

∑1
k=0 pjk1πjk1∑1

j=0
∑1

k=0 πjk1
−

∑1
j=0

∑1
k=0 pjk0πjk0∑1

j=0
∑1

k=0 πjk0
,

where πjkl and pj1l are identifiable, but pj0l is not.

Thus, the identification of τITT requires four constraints
(PROPOSITION 3).
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Concluding Remarks

Concluding Remarks

Missing outcomes in randomized experiments are frequently
encountered in practice.

Possibility of nonignorable missing-data mechanism.
Identification and estimation strategies are proposed for:

standard randomized experiments.
randomized experiments with noncompliance.

The proposed sensitivity analyses are useful to examine the
robustness of one’s conclusion.

The method of bounds gives the identification region without any
assumption.
The assumptions such as MAR and NI are not directly identifiable
from the observed data, but point-identify the quantity of interest.
Sensitivity analysis complements these two approaches.
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