Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes

Kosuke Imai

Department of Politics Princeton University

April 13, 2007

Kosuke Imai (Princeton University) Nonignorable Missing Outcomes 1 / 19 Introduction Overview

- Use of randomized experiments for causal inference.
- Missing outcomes threaten the validity of causal inference.
- A growing literature on the topic:
 - Method of bounds (e.g., Horowitz and Manksi, 2000).
 - Semiparametric methods (e.g., Scharfstein et al. 1999).
 - Ignorability (e.g., Yau and Little, 2001).
 - Latent ignorability (e.g., Frangakis and Rubin, 1999).
- Nonignorable missing outcomes:
 - Political science: self-reported voting behavior.
 - Economics: self-reported income.
 - Medicine: self-reported health status.
- The research project:
 - Alternative identification and estimation strategies.
 - With and without noncompliance.
 - New sensitivity analyses.
 - Applications in political science, psychology, and public health.

A Motivating Example: German Election Experiment

- Internet randomized experiment during the 2005 election.
 - Treatment group: asked if they intend to vote, whether in person or by mail, and the main obstacle they face.
 - Control group: asked if they intend to vote, but not how.
 - Outcome: self-reported turnout.
- Psychological theory on intentions (e.g., Gollwitzer, 1999):
 - Goal intentions: "I am going to vote!"
 - Implementation intentions: "Since I will be busy on the election day, I am going to vote by mail!"
 - Theoretical and empirical evidence: implementation intentions can more effectively increase the probability of achieving one's goal by automating goal implementation through anticipatory decisions (e.g., drug intake, breast self-examination, regular exercises).

Kosuke Imai (Princeton University)	Nonignorable Mi	ssing Outcomes	3 / 19
	Introduction	A Motivating Example	

Data and Nonresponse Problem

Data:

		fraction	birth year	fraction of	nonresponse
	size	of female	(mean)	vote intenders	rate
treatment	548	0.55	1970.9	0.94	0.21
control	572	0.54	1971.1	0.93	0.25

- Different nonresponse rates (*p*-value 11% using χ^2 test).
- Possibility of nonignorable nonresponse: the act of voting itself may increase their interest in politics and hence the probability of their participation in the post-election survey.
- The observed turnout: 0.83 for the treated and 0.81 for the control.

Setup

Framework for Standard Randomized Experiments

- Causal inference via potential outcomes (e.g., Holland 1986).
 - Experimental unit: $i = 1, 2, \ldots, n$.
 - Binary treatments: $T_i \in \{0, 1\}$.
 - Potential outcomes: $Y_i(T_i)$.
 - Observed outcome: $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$.
 - Potential response indicators: $R_i(T_i)$.
 - Observed response indicator: $R_i = T_i R_i(1) + (1 T_i) R_i(0)$.
 - Pre-treatment covariates: X_i .
- No interference among units (Cox 1958; Rubin 1990).
- Randomized treatment: $(Y_i(1), Y_i(0), R_i(1), R_i(0)) \perp T_i$ for all *i*.
- Estimands:
 - Average Treatment Effect (ATE): $\tau_{ATE} \equiv E[Y_i(1) - Y_i(0)] = E[Y_i \mid T_i = 1] - E[Y_i \mid T_i = 0].$
 - Conditional Average Treatment Effect (CATE): $\tau_{CATE} \equiv \frac{1}{n} \sum_{i=1}^{n} E[Y_i(1) - Y_i(0) \mid X_i].$

Kosuke Imai (Princeton University)	Nonignorable Missing Outcomes	5 / 19

Standard Randomized Experiments Identification and Estimation Strategies

Identification Problem in the Binary Case

- Assume $Y_i(0), Y_i(1) \in \{0, 1\}$.
- Define,

$$\begin{array}{lll} \rho_{jk} & \equiv & \mathsf{Pr}(\,\mathsf{Y}_i = \mathsf{1} \mid T_i = j, R_i = k), \\ \pi_{jk} & \equiv & \mathsf{Pr}(\,T_i = j, R_i = k), \end{array}$$

• Then, the ATE can be written as,

$$\pi_{ATE} = \frac{p_{10}\pi_{10} + p_{11}\pi_{11}}{\pi_{10} + \pi_{11}} - \frac{p_{00}\pi_{00} + p_{01}\pi_{01}}{\pi_{00} + \pi_{01}},$$

where p_{00} and p_{10} are not identifiable from the data.

Since p_{j0} ∈ [0, 1], the sharp bounds (Horowitz & Manski, 2000) are given by,

$$\tau_{ATE} \in \left[\frac{p_{11}\pi_{11}(\pi_{00} + \pi_{01}) - (\pi_{00} + p_{01}\pi_{01})(\pi_{10} + \pi_{11})}{(\pi_{10} + \pi_{11})(\pi_{00} + \pi_{01})}, \frac{(\pi_{10} + p_{11}\pi_{11})(\pi_{00} + \pi_{01}) - p_{01}\pi_{01}(\pi_{10} + \pi_{11})}{(\pi_{10} + \pi_{11})(\pi_{00} + \pi_{01})}\right]$$

Identification Strategies

Ignorability Assumption (Little & Rubin, 1987): the outcome variable is *missing at random* (MAR) given the treatment status and observed covariates. For *j* ∈ {0, 1} and *x* ∈ X,

$$\Pr(R_i(j) = 1 | T_i = j, Y_i(j) = 1, X_i = x)$$

=
$$\Pr(R_i(j) = 1 | T_i = j, Y_i(j) = 0, X_i = x),$$

- The proposed assumption: missing-data mechanism directly depends on the realized value of the outcome variable itself, but is conditionally independent of the treatment status.
- Reasonable if the treatment does not *directly* cause nonresponse.
- Nonignorability (NI) Assumption: For $k \in \{0, 1\}$ and $x \in \mathcal{X}$,

$$\Pr(R_i(j) = 1 | T_i = 0, Y_i(0) = k, X_i = x)$$

=
$$\Pr(R_i(j) = 1 | T_i = 1, Y_i(1) = k, X_i = x).$$

 Identification of the ATE is established via Bayes rule (PROPOSITION 1).

Kosuke Imai (Princeton University)	Nonignorable Missing Outcomes	7 / 19

Standard Randomized Experiments Identification and Estimation Strategies

Inference under the Nonignorability Assumption

Without observed covariates (given a particular value of a covariate), the ML estimator of the ATE is available in a closed form (PROPOSITION 2).

A parametric approach with the covariates (estimation of CACE):

• Specify the following parametric models (e.g., logistic regression),

$$q_j(x) = \Pr(Y_i = 1 | T_i = j, X_i = x),$$

 $r_{jk}(x) = \Pr(R_i = 1 | T_i = j, Y_i = k, X_i = x),$

• Complete-data likelihood function:

$$\begin{split} &\prod_{i=1}^{n} \left[r_{\cdot 1}(X_{i})^{R_{i}} \{1 - r_{\cdot 1}(X_{i})\}^{1 - R_{i}} \right]^{Y_{i}} \left[r_{\cdot 0}(X_{i})^{R_{i}} \{1 - r_{\cdot 0}(X_{i})\}^{1 - R_{i}} \right]^{1 - Y_{i}} \\ &\times \left[q_{1}(X_{i})^{Y_{i}} \{1 - q_{1}(X_{i})\}^{1 - Y_{i}} \right]^{T_{i}} \left[q_{0}(X_{i})^{Y_{i}} \{1 - q_{0}(X_{i})\}^{1 - Y_{i}} \right]^{1 - T_{i}}, \end{split}$$

where $r_k(x) = r_{1k}(x) = r_{0k}(x)$ for $x \in \mathcal{X}$ under the NI assumption. • Computation: *EM* algorithm, Gibbs sampler with prior distributions.

Multi-valued Outcome and Treatment Variables

- Setup:
 - *J*-valued treatment variable: $T_i \in T \equiv \{0, 1, \dots, J-1\}$.
 - *K*-valued outcome variable: $Y(T_i) \in \mathcal{Y} \equiv \{0, 1, \dots, K-1\}.$
 - Average Treatment Effects: $\tau_{ATE}^{(j)} \equiv E[Y_i(j) Y_i(j-1)].$
- The NI assumption:

$$\Pr(R_i(j) = 1 | T_i = j, Y_i(j) = k, X_i = x)$$

=
$$\Pr(R_i(j') = 1 | T_i = j', Y_i(j') = k, X_i = x).$$

- Identification: there are J(K 1) unknown probabilities while the assumption implies J(J 1)K/2 constraints. Thus, the identification is possible so long as $J \ge 3 2/K$.
- A general parametric approach: For example, we may assume,

$$\Pr(R_i = 1 \mid T_i = j, Y_i = y, X_i = x) = \frac{\exp(\alpha + \beta y + \gamma x)}{1 + \exp(\alpha + \beta y + \gamma x)},$$

for every $j \in \mathcal{T}, x \in \mathcal{X}$, and $y \in \mathcal{Y}$.

Kosuke Imai (Princeton University)

Nonignorable Missing Outcomes

9/19

Standard Randomized Experiments Sensitivity Analysis

Sensitivity Analysis with No Covariate

- Motivation: since neither MAR nor NI assumptions are directly verifiable from the data, it is of interest to examine the sensitivity of one's conclusion to the key identifying assumption.
- Sensitivity analysis based on the following parameter,

$$\theta_k^{NI} \equiv \frac{\Pr(R_i(1) = 1 \mid T_i = 1, Y_i(1) = k)}{\Pr(R_i(0) = 1 \mid T_i = 0, Y_i(0) = k)},$$

for k = 0, 1 where the range of the parameter is given by,

$$\frac{(1-p_{11})\pi_{11}}{(1-p_{11})\pi_{11}+\pi_{10}} \leq \theta_0^{NI} \leq \frac{(1-p_{01})\pi_{01}+\pi_{00}}{(1-p_{01})\pi_{01}},\\ \frac{p_{11}\pi_{11}}{p_{11}\pi_{11}+\pi_{10}} \leq \theta_1^{NI} \leq \frac{p_{01}\pi_{01}+\pi_{00}}{p_{01}\pi_{01}}.$$

- τ_{ATE} is now a function of θ_k^{NI} and identifiable parameters.
- See how τ_{ATE} varies along with the value of θ_k .

Sensitivity Analysis with Observed Covariates

• Consider the following logistic regression:

$$\Pr(R_i = 1 \mid T_i = j, Y_i = k, X_i = x) = \frac{\exp(\alpha_{jk} + \beta x)}{1 + \exp(\alpha_{jk} + \beta x)},$$

• The sensitivity analysis can be based on the odds ratio for the conditional probabilities of missingness,

$$\Gamma_{k}^{NI} = \frac{r_{1k}(\boldsymbol{x};\eta_{1k})/[1-r_{1k}(\boldsymbol{x};\eta_{1k})]}{r_{0k}(\boldsymbol{x};\eta_{0k})/[1-r_{0k}(\boldsymbol{x};\eta_{0k})]} = \exp(\alpha_{1k} - \alpha_{0k}),$$

where $\Gamma_k^{NI} \ge 0$ for $k \in \{0, 1\}$.

• Computation: *EM* algorithm with the following constraint $\alpha_{1k} = \log \Gamma_k^{NI} + \alpha_{0k}$, or Bayesian analysis incorporating this constraint.

Kosuke Imai (Princeton University)	Nonignorable Missing Outcomes	11 / 19

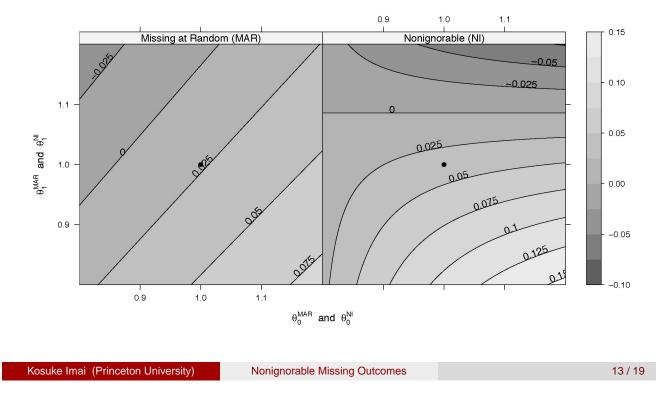
Standard Randomized Experiments Analysis of the German Election Study

Analysis of the German Election Experiment

- Model:
 - 1 Turnout model: $q_j(X_i) = \Pr(Y_i = 1 | T_i = j, X_i = x) = \exp(\alpha_j + x^\top \beta) / [1 + \exp(\alpha_j + x^\top \beta)].$
 - 2 Response model: $r_k(X_i) = \Pr(R_i = 1 | Y_i = k, X_i = x) = \exp(\gamma_k + x^\top \delta) / [1 + \exp(\gamma_k + x^\top \delta)].$
- ML estimates (using *EM* algorithm) with bootstrap standard errors.
- Results:

	point	standard	95%	CI
	estimate	error	lower	upper
Missing at Random (MAR)				
No covariate	0.021	0.026	-0.030	0.073
With covariates	0.014	0.025	-0.035	0.063
Nonignorable (NI)				
No covariate	0.035	0.051	-0.049	0.119
With covariates	0.046	0.036	-0.011	0.129

Sensitivity Analysis without Covariates



Standard Randomized Experiments Analysis of the German Election Study

Sensitivity Analysis with Covariates

Results under the NI assumption:

	$\Gamma_1^{NI} = \frac{1}{3}$	$\Gamma_1^{NI} = 1$	$\Gamma_1^{NI} = 3$
	0.046	0.003	-0.075
$\Gamma_0^{NI} = \frac{1}{3}$	(0.027)	(0.020)	(0.027)
	[-0.006, 0.100]	[-0.032, 0.046]	[-0.128, -0.024]
	0.045	0.046	0.004
$\Gamma_{0}^{NI} = 1$	(0.029)	(0.036)	(0.039)
	[-0.015, 0.097]	[-0.011, 0.129]	[-0.073, 0.080]
	0.134	0.047	0.046
$\Gamma_0^{NI} = 3$	(0.029)	(0.033)	(0.028)
	[0.080, 0.192]	[-0.020, 0.111]	[-0.009, 0.101]

• The ML estimates appear to be somewhat sensitive, but the scenarios corresponding to $(\Gamma_0^{NI}, \Gamma_1^{NI}) = (3, 1/3), (1/3, 3)$ may be highly unlikely.

Kosuke Imai (Princeton University)

Setup

Randomized Experiments with Noncompliance

- Randomized "encouragement" design:
 - Binary encouragement: $Z_i \in \{0, 1\}$.
 - Potential binary treatments: $T_i(Z_i) \in \{0, 1\}$.
 - Observed treatment: $T_i = Z_i T_i(1) + (1 Z_i) T_i(0)$.
 - Potential outcomes: $Y_i(Z_i)$.
 - Observed outcome: $Y_i = Z_i Y_i(1) + (1 Z_i) Y_i(0)$.
 - Potential response indicators: $R_i(Z_i)$.
 - Observed response indicator: $R_i = Z_i R_i(1) + (1 Z_i) R_i(0)$.
- Randomization of encouragement:

 $(Y_i(1), Y_i(0), T_i(1), T_i(0), R_i(1), R_i(0)) \perp Z_i,$

• Intention-To-Treat (ITT) effect: $\tau_{ITT} \equiv E[Y_i(T_i(1), 1) - Y_i(T_i(0), 0)].$

Kosuke Imai (Princeton University)	Nonignorable Missing Outcomes	15 / 19

Randomized Experiments with Noncompliance Setup

Instrumental Variables (Angrist, Imbens & Rubin, 1996)

- Noncompliance
 - Complier: $T_i(1) = 1$ and $T_i(0) = 0$.
 - Noncomplier:
 - **1** Always-taker ($C_i = c$): $T_i(1) = T_i(0) = 1$.
 - 2 Never-taker ($C_i = n$): $T_i(1) = T_i(0) = 0$.
 - 3 Defier $(C_i = d)$: $T_i(1) = 0$ and $T_i(0) = 1$.

• Assumptions:

- 1 Monotonicity (no defier): $T_i(1) \ge T_i(0)$.
- 2 Exclusion restriction for noncompliers: $Y_i(1) = Y_i(0)$ for $C_i = a, n$ (i.e., zero ITT effect for always-takers and never-takers).
- Complier Average Causal Effect (IV estimand):

$$au_{CACE} \equiv E[Y_i(1) - Y_i(0) \mid C_i = c] = \frac{E[Y_i(1) - Y_i(0)]}{E[T_i(1) - T_i(0)]}.$$

Identification Strategies

• Ignorability (Yau & Little, 2001): For j = 0, 1 and l = 0, 1,

$$\Pr(R_i(l) = 1 | Y_i(l) = 1, T_i(l) = j, Z_i = l, X_i = x)$$

=
$$\Pr(R_i(l) = 1 | Y_i(l) = 0, T_i(l) = j, Z_i = l, X_i = x).$$

• Latent Ignorability (Frangakis & Rubin, 1999): • Latent ignorability: For I = 0, 1 and $t \in \{c, n, a\}$,

 $\begin{aligned} & \mathsf{Pr}(R_i(I) = 1 \mid Y_i(I) = 1, Z_i = I, C_i = t, X_i = x) \\ & = \quad \mathsf{Pr}(R_i(I) = 1 \mid Y_i(I) = 0, Z_i = I, C_i = t, X_i = x). \end{aligned}$

Compound exclusion restriction for noncompliers: $Y_i(0) = Y_i(1)$, and $R_i(1) = R_i(0)$, for $C_i = n, a$.

• Nonignorability: For j = 0, 1, and k = 0, 1,

$$Pr(R_i(1) = 1 | T_i(1) = j, Y_i(1) = k, Z_i = 1, X_i = x)$$

=
$$Pr(R_i(0) = 1 | T_i(0) = j, Y_i(0) = k, Z_i = 0, X_i = x).$$

Kosuke Imai (Princeton University)

Nonignorable Missing Outcomes

Randomized Experiments with Noncompliance Identification and Estimation Strategies

Theoretical Results in the Binary Case

- Apply the same analytical strategy as before.
- Define,

$$p_{jkl} \equiv \Pr(Y_i = 1 \mid T_i = j, R_i = k, Z_i = l),$$

$$\pi_{jkl} \equiv \Pr(T_i = j, R_i = k, Z_i = l).$$

• Rewrite the ITT effect as,

$$\tau_{ITT} = \frac{\sum_{j=0}^{1} \sum_{k=0}^{1} p_{jk1} \pi_{jk1}}{\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{jk1}} - \frac{\sum_{j=0}^{1} \sum_{k=0}^{1} p_{jk0} \pi_{jk0}}{\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{jk0}},$$

where π_{ikl} and p_{i1l} are identifiable, but p_{i0l} is not.

• Thus, the identification of τ_{ITT} requires four constraints (PROPOSITION 3).

17/19

Concluding Remarks

- Missing outcomes in randomized experiments are frequently encountered in practice.
- Possibility of nonignorable missing-data mechanism.
- Identification and estimation strategies are proposed for:
 - standard randomized experiments.
 - randomized experiments with noncompliance.
- The proposed sensitivity analyses are useful to examine the robustness of one's conclusion.
 - The method of bounds gives the identification region without any assumption.
 - The assumptions such as MAR and NI are not directly identifiable from the observed data, but point-identify the quantity of interest.
 - Sensitivity analysis complements these two approaches.

Kosuke Imai (Princeton University)

Nonignorable Missing Outcomes

19 / 19