Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes

Kosuke Imai

Department of Politics
Princeton University

July 31, 2007

Overview

- Missing outcomes in randomized experiments.
- A growing literature on the topic:
- Method of bounds (e.g., Horowitz and Manksi, 2000).
- Semiparametric methods (e.g., Scharfstein et al. 1999).
- Ignorability (e.g., Yau and Little, 2001).
- Latent ignorability (e.g., Frangakis and Rubin, 1999).
- Nonignorable missing outcomes:
- Political science: self-reported voting behavior.
- Economics: self-reported income.
- Medicine: self-reported health status.
- The paper offers (with and without noncompliance):
(1) Alternative identification and estimation strategies.
(2) New sensitivity analyses.
(3) Applications in political science, psychology, and public health.

Framework for Standard Randomized Experiments

- Causal inference via potential outcomes (e.g., Holland 1986).
- Experimental unit: $i=1,2, \ldots, n$.
- Binary treatments: $T_{i} \in\{0,1\}$.
- Potential outcomes: $Y_{i}\left(T_{i}\right)$.
- Observed outcome: $Y_{i}=T_{i} Y_{i}(1)+\left(1-T_{i}\right) Y_{i}(0)$.
- Potential response indicators: $R_{i}\left(T_{i}\right)$.
- Observed response indicator: $R_{i}=T_{i} R_{i}(1)+\left(1-T_{i}\right) R_{i}(0)$.
- Pre-treatment covariates: X_{i}.
- No interference among units (Cox 1958; Rubin 1990).
- Randomized treatment: $\left(Y_{i}(1), Y_{i}(0), R_{i}(1), R_{i}(0)\right) \Perp T_{i}$ for all i.
- Estimands:
- Average Treatment Effect (ATE):
$\tau_{\text {ATE }} \equiv E\left[Y_{i}(1)-Y_{i}(0)\right]=E\left[Y_{i} \mid T_{i}=1\right]-E\left[Y_{i} \mid T_{i}=0\right]$.
- Conditional Average Treatment Effect (CATE):
$\tau_{C A T E} \equiv \frac{1}{n} \sum_{i=1}^{n} E\left[Y_{i}(1)-Y_{i}(0) \mid X_{i}\right]$.

Standard Randomized Experiments Identification and Estimation Strategies

Identification Problem in the Binary Case

- Assume $Y_{i}(0), Y_{i}(1) \in\{0,1\}$.
- Define,

$$
\begin{aligned}
p_{j k} & \equiv \operatorname{Pr}\left(Y_{i}=1 \mid T_{i}=j, R_{i}=k\right) \\
\pi_{j k} & \equiv \operatorname{Pr}\left(T_{i}=j, R_{i}=k\right)
\end{aligned}
$$

- Then, the ATE can be written as,

$$
\tau_{\text {ATE }}=\frac{p_{10} \pi_{10}+p_{11} \pi_{11}}{\pi_{10}+\pi_{11}}-\frac{p_{00} \pi_{00}+p_{01} \pi_{01}}{\pi_{00}+\pi_{01}}
$$

where p_{00} and p_{10} are not identifiable from the data.

- Since $p_{j 0} \in[0,1]$, the sharp bounds (Horowitz \& Manski, 2000) are given by,

$$
\tau_{\text {ATE }} \in\left[\frac{p_{11} \pi_{11}\left(\pi_{00}+\pi_{01}\right)-\left(\pi_{00}+p_{01} \pi_{01}\right)\left(\pi_{10}+\pi_{11}\right)}{\left(\pi_{10}+\pi_{11}\right)\left(\pi_{00}+\pi_{01}\right)},\right.
$$

Identification Strategies

- Ignorability Assumption (Little \& Rubin, 1987): For $j \in\{0,1\}$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=j, Y_{i}(j)=1, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=j, Y_{i}(j)=0, X_{i}=x\right),
\end{aligned}
$$

- Nonignorability (NI) Assumption: For $k \in\{0,1\}$ and $x \in \mathcal{X}$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=0, Y_{i}(0)=k, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=1, Y_{i}(1)=k, X_{i}=x\right) .
\end{aligned}
$$

- Missing-data mechanism directly depends on the realized value of the outcome variable itself, but is conditionally independent of the treatment status.
- Identification of the ATE is established via Bayes rule (Proposition 1).

Standard Randomized Experiments

Inference under the Nonignorability Assumption

(1) Without covariates (or within strata defined by covariates): the ML estimator is in a closed form (Proposition 2).
(2) With covariates:

- Modeling approach (e.g., logistic regression):

$$
\begin{aligned}
q_{j}(x) & =\operatorname{Pr}\left(Y_{i}=1 \mid T_{i}=j, X_{i}=x\right) \\
r_{j k}(x) & =\operatorname{Pr}\left(R_{i}=1 \mid T_{i}=j, Y_{i}=k, X_{i}=x\right)
\end{aligned}
$$

- Complete-data likelihood function:

$$
\begin{aligned}
& \prod_{i=1}^{n}\left[r_{.1}\left(X_{i}\right)^{R_{i}}\left\{1-r_{.1}\left(X_{i}\right)\right\}^{1-R_{i}}\right]^{Y_{i}}\left[r_{.0}\left(X_{i}\right)^{R_{i}}\left\{1-r_{.0}\left(X_{i}\right)\right\}^{1-R_{i}}\right]^{1-Y_{i}} \\
& \times\left[q_{1}\left(X_{i}\right)^{Y_{i}}\left\{1-q_{1}\left(X_{i}\right)\right\}^{1-Y_{i}}\right]^{T_{i}}\left[q_{0}\left(X_{i}\right)^{Y_{i}}\left\{1-q_{0}\left(X_{i}\right)\right\}^{1-Y_{i}}\right]^{1-T_{i}}
\end{aligned}
$$

where $r_{\cdot k}(x)=r_{1 k}(x)=r_{0 k}(x)$ for $x \in \mathcal{X}$ under the NI assumption.

- Computation: EM algorithm, Gibbs sampler with prior distributions.

Sensitivity Analysis

- Neither MAR nor NI assumptions are testable.
- Sensitivity analysis based on the following parameter,

$$
\theta_{k}^{N /} \equiv \frac{\operatorname{Pr}\left(R_{i}(1)=1 \mid T_{i}=1, Y_{i}(1)=k\right)}{\operatorname{Pr}\left(R_{i}(0)=1 \mid T_{i}=0, Y_{i}(0)=k\right)}
$$

for $k=0,1$ where the range of the parameter is given by,

$$
\begin{aligned}
\frac{\left(1-p_{11}\right) \pi_{11}}{\left(1-p_{11}\right) \pi_{11}+\pi_{10}} & \leq \theta_{0}^{N /} \leq \frac{\left(1-p_{01}\right) \pi_{01}+\pi_{00}}{\left(1-p_{01}\right) \pi_{01}} \\
\frac{p_{11} \pi_{11}}{p_{11} \pi_{11}+\pi_{10}} & \leq \theta_{1}^{N /} \leq \frac{p_{01} \pi_{01}+\pi_{00}}{p_{01} \pi_{01}}
\end{aligned}
$$

- $\tau_{\text {ATE }}$ is now a function of $\theta_{k}^{N /}$ and identifiable parameters.
- See how $\tau_{A T E}$ varies along with the value of θ_{k}.

Randomized Experiments with Noncompliance

- Randomized "encouragement" design:
- Binary encouragement: $Z_{i} \in\{0,1\}$.
- Potential binary treatments: $T_{i}\left(Z_{i}\right) \in\{0,1\}$.
- Observed treatment: $T_{i}=Z_{i} T_{i}(1)+\left(1-Z_{i}\right) T_{i}(0)$.
- Potential outcomes: $Y_{i}\left(Z_{i}\right)$.
- Observed outcome: $Y_{i}=Z_{i} Y_{i}(1)+\left(1-Z_{i}\right) Y_{i}(0)$.
- Potential response indicators: $R_{i}\left(Z_{i}\right)$.
- Observed response indicator: $R_{i}=Z_{i} R_{i}(1)+\left(1-Z_{i}\right) R_{i}(0)$.
- Randomization of encouragement:

$$
\left(Y_{i}(1), Y_{i}(0), T_{i}(1), T_{i}(0), R_{i}(1), R_{i}(0)\right) \quad \Perp \quad Z_{i},
$$

- Intention-To-Treat (ITT) effect: $\tau_{I T T} \equiv E\left[Y_{i}\left(T_{i}(1), 1\right)-Y_{i}\left(T_{i}(0), 0\right)\right]$.

Instrumental Variables (Angrist, Imbens \& Rubin, 1996)

- Noncompliance
- Complier: $T_{i}(1)=1$ and $T_{i}(0)=0$.
- Noncomplier:
(1) Always-taker $\left(C_{i}=c\right): T_{i}(1)=T_{i}(0)=1$.
(2) Never-taker $\left(C_{i}=n\right): T_{i}(1)=T_{i}(0)=0$.
(3) Defier $\left(C_{i}=d\right): T_{i}(1)=0$ and $T_{i}(0)=1$.
- Assumptions:
(1) Monotonicity (no defier): $T_{i}(1) \geq T_{i}(0)$.
(2) Exclusion restriction for noncompliers: $Y_{i}(1)=Y_{i}(0)$ for $C_{i}=a$, n (i.e., zero ITT effect for always-takers and never-takers).
- Complier Average Causal Effect (IV estimand):

$$
\tau_{C A C E} \equiv E\left[Y_{i}(1)-Y_{i}(0) \mid C_{i}=c\right]=\frac{E\left[Y_{i}(1)-Y_{i}(0)\right]}{E\left[T_{i}(1)-T_{i}(0)\right]}
$$

Identification Strategies

- Ignorability (Yau \& Little, 2001): For $j=0,1$ and $I=0,1$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(I)=1 \mid Y_{i}(I)=1, T_{i}(I)=j, Z_{i}=I, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(I)=1 \mid Y_{i}(I)=0, T_{i}(I)=j, Z_{i}=I, X_{i}=x\right)
\end{aligned}
$$

- Latent Ignorability (Frangakis \& Rubin, 1999):
(1) Latent ignorability: For $I=0,1$ and $t \in\{c, n, a\}$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(I)=1 \mid Y_{i}(I)=1, Z_{i}=I, C_{i}=t, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(I)=1 \mid Y_{i}(I)=0, Z_{i}=I, C_{i}=t, X_{i}=x\right)
\end{aligned}
$$

(2) Compound exclusion restriction for noncompliers:

$$
Y_{i}(0)=Y_{i}(1), \text { and } R_{i}(1)=R_{i}(0), \text { for } C_{i}=n, \text { a. }
$$

- Nonignorability: For $j=0,1$, and $k=0,1$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(1)=1 \mid T_{i}(1)=j, Y_{i}(1)=k, Z_{i}=1, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(0)=1 \mid T_{i}(0)=j, Y_{i}(0)=k, Z_{i}=0, X_{i}=x\right)
\end{aligned}
$$

Theoretical Results in the Binary Case

- Apply the same analytical strategy as before.
- Define,

$$
\begin{aligned}
p_{j k l} & \equiv \operatorname{Pr}\left(Y_{i}=1 \mid T_{i}=j, R_{i}=k, Z_{i}=l\right) \\
\pi_{j k l} & \equiv \operatorname{Pr}\left(T_{i}=j, R_{i}=k, Z_{i}=l\right)
\end{aligned}
$$

- Rewrite the ITT effect as,

$$
\tau_{I T T}=\frac{\sum_{j=0}^{1} \sum_{k=0}^{1} p_{j k 1} \pi_{j k 1}}{\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{j k 1}}-\frac{\sum_{j=0}^{1} \sum_{k=0}^{1} p_{j k 0} \pi_{j k 0}}{\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{j k 0}}
$$

where $\pi_{j k l}$ and $p_{j 1 /}$ are identifiable, but $p_{j o l}$ is not.

- Thus, the identification of $\tau_{I T T}$ requires four constraints (PROPOSITION 3).

Inference and Sensitivity Analysis

- With no covariate:
- ML estimator and its asymptotic variance are in a closed-form.
- Sensitivity analysis parameters:

$$
\psi_{j k}^{N /} \equiv \frac{\operatorname{Pr}\left(R_{i}(1)=1 \mid T_{i}(1)=j, Y_{i}(1)=k, Z_{i}=1\right)}{\operatorname{Pr}\left(R_{i}(0)=1 \mid T_{i}(0)=j, Y_{i}(0)=k, Z_{i}=0\right)},
$$

- Modeling approach:

$$
\begin{aligned}
& p_{j l}(x) \equiv \operatorname{Pr}\left(Y_{i}=1 \mid T_{i}=j, Z_{i}=I, X_{i}=x\right) \\
& q_{l}(x) \equiv \operatorname{Pr}\left(T_{i}=1 \mid Z_{i}=I, X_{i}=x\right) \\
& r_{j k}(x) \equiv \operatorname{Pr}\left(R_{i}=1 \mid T_{i}=j, Y_{i}=k, X_{i}=x\right) \\
& \tau_{I T T}(x)=\left[p_{11}(x) q_{1}(x)+p_{01}(x)\left\{1-q_{1}(x)\right\}\right]- \\
& {\left[p_{10}(x) q_{0}(x)+p_{00}(x)\left\{1-q_{0}(x)\right\}\right] }
\end{aligned}
$$

Concluding Remarks

- Nonignorable missing data in randomized experiments.
- Identification and estimation strategies for randomized experiments with and without noncompliance.
- Sensitivity analyses to examine robustness of conclusiosns.

