Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes

	Kosuke Imai	
	Department of Politics Princeton University	
	July 31, 2007	
Kosuke Imai (Princeton University)	Nonignorable Missing Outcomes	1 / 13
	Introduction Overview	
Overview		

- Missing outcomes in randomized experiments.
- A growing literature on the topic:
 - Method of bounds (e.g., Horowitz and Manksi, 2000).
 - Semiparametric methods (e.g., Scharfstein et al. 1999).
 - Ignorability (e.g., Yau and Little, 2001).
 - Latent ignorability (e.g., Frangakis and Rubin, 1999).
- Nonignorable missing outcomes:
 - Political science: self-reported voting behavior.
 - Economics: self-reported income.
 - Medicine: self-reported health status.
- The paper offers (with and without noncompliance):
 - Alternative identification and estimation strategies.
 - 2 New sensitivity analyses.
 - Applications in political science, psychology, and public health.

Setup

Framework for Standard Randomized Experiments

- Causal inference via potential outcomes (e.g., Holland 1986).
 - Experimental unit: $i = 1, 2, \ldots, n$.
 - Binary treatments: $T_i \in \{0, 1\}$.
 - Potential outcomes: $Y_i(T_i)$.
 - Observed outcome: $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$.
 - Potential response indicators: $R_i(T_i)$.
 - Observed response indicator: $R_i = T_i R_i(1) + (1 T_i) R_i(0)$.
 - Pre-treatment covariates: X_i .
- No interference among units (Cox 1958; Rubin 1990).
- Randomized treatment: $(Y_i(1), Y_i(0), R_i(1), R_i(0)) \perp T_i$ for all *i*.
- Estimands:
 - Average Treatment Effect (ATE): $\tau_{ATE} \equiv E[Y_i(1) - Y_i(0)] = E[Y_i \mid T_i = 1] - E[Y_i \mid T_i = 0].$
 - Conditional Average Treatment Effect (CATE): $\tau_{CATE} \equiv \frac{1}{n} \sum_{i=1}^{n} E[Y_i(1) - Y_i(0) \mid X_i].$

Kosuke Imai (Princeton University)	Nonignorable Missing Outcomes	3 / 13

Standard Randomized Experiments Identification and Estimation Strategies

Identification Problem in the Binary Case

- Assume $Y_i(0), Y_i(1) \in \{0, 1\}$.
- Define,

$$\begin{array}{lll} \rho_{jk} & \equiv & \mathsf{Pr}(\,\mathsf{Y}_i = \mathsf{1} \mid T_i = j, R_i = k), \\ \pi_{jk} & \equiv & \mathsf{Pr}(\,T_i = j, R_i = k), \end{array}$$

• Then, the ATE can be written as,

$$\tau_{ATE} = \frac{p_{10}\pi_{10} + p_{11}\pi_{11}}{\pi_{10} + \pi_{11}} - \frac{p_{00}\pi_{00} + p_{01}\pi_{01}}{\pi_{00} + \pi_{01}},$$

where p_{00} and p_{10} are not identifiable from the data.

Since p_{j0} ∈ [0, 1], the sharp bounds (Horowitz & Manski, 2000) are given by,

$$\tau_{ATE} \in \left[\frac{p_{11}\pi_{11}(\pi_{00} + \pi_{01}) - (\pi_{00} + p_{01}\pi_{01})(\pi_{10} + \pi_{11})}{(\pi_{10} + \pi_{11})(\pi_{00} + \pi_{01})}, \frac{(\pi_{10} + p_{11}\pi_{11})(\pi_{00} + \pi_{01}) - p_{01}\pi_{01}(\pi_{10} + \pi_{11})}{(\pi_{10} + \pi_{11})(\pi_{00} + \pi_{01})}\right]$$

Identification Strategies

• Ignorability Assumption (Little & Rubin, 1987): For $j \in \{0, 1\}$,

$$\Pr(R_i(j) = 1 | T_i = j, Y_i(j) = 1, X_i = x) \\ = \Pr(R_i(j) = 1 | T_i = j, Y_i(j) = 0, X_i = x),$$

• Nonignorability (NI) Assumption: For $k \in \{0, 1\}$ and $x \in \mathcal{X}$,

$$\Pr(R_i(j) = 1 | T_i = 0, Y_i(0) = k, X_i = x)$$

=
$$\Pr(R_i(j) = 1 | T_i = 1, Y_i(1) = k, X_i = x).$$

- Missing-data mechanism directly depends on the realized value of the outcome variable itself, but is conditionally independent of the treatment status.
- Identification of the ATE is established via Bayes rule (PROPOSITION 1).

Standard Randomized Experiments Identification and Estimation Strategies

Inference under the Nonignorability Assumption

Without covariates (or within strata defined by covariates): the ML estimator is in a closed form (PROPOSITION 2).

With covariates:

• Modeling approach (e.g., logistic regression):

$$q_j(x) = \Pr(Y_i = 1 | T_i = j, X_i = x),$$

 $r_{jk}(x) = \Pr(R_i = 1 | T_i = j, Y_i = k, X_i = x),$

• Complete-data likelihood function:

$$\prod_{i=1}^{n} \left[r_{\cdot 1}(X_i)^{R_i} \{ 1 - r_{\cdot 1}(X_i) \}^{1-R_i} \right]^{Y_i} \left[r_{\cdot 0}(X_i)^{R_i} \{ 1 - r_{\cdot 0}(X_i) \}^{1-R_i} \right]^{1-Y_i} \\ \times \left[q_1(X_i)^{Y_i} \{ 1 - q_1(X_i) \}^{1-Y_i} \right]^{T_i} \left[q_0(X_i)^{Y_i} \{ 1 - q_0(X_i) \}^{1-Y_i} \right]^{1-T_i},$$

where $r_{k}(x) = r_{1k}(x) = r_{0k}(x)$ for $x \in \mathcal{X}$ under the NI assumption. • Computation: *EM* algorithm, Gibbs sampler with prior distributions.

Standard Randomized Experiments Sensitivity Analysis

Sensitivity Analysis

- Neither MAR nor NI assumptions are testable.
- Sensitivity analysis based on the following parameter,

$$\theta_k^{NI} \equiv \frac{\Pr(R_i(1) = 1 \mid T_i = 1, Y_i(1) = k)}{\Pr(R_i(0) = 1 \mid T_i = 0, Y_i(0) = k)},$$

for k = 0, 1 where the range of the parameter is given by,

$$\frac{(1-p_{11})\pi_{11}}{(1-p_{11})\pi_{11}+\pi_{10}} \leq \theta_0^{NI} \leq \frac{(1-p_{01})\pi_{01}+\pi_{00}}{(1-p_{01})\pi_{01}}$$
$$\frac{p_{11}\pi_{11}}{p_{11}\pi_{11}+\pi_{10}} \leq \theta_1^{NI} \leq \frac{p_{01}\pi_{01}+\pi_{00}}{p_{01}\pi_{01}}.$$

- τ_{ATE} is now a function of θ_k^{NI} and identifiable parameters.
- See how τ_{ATE} varies along with the value of θ_k .

Kosuke Imai (Princeton University)	Nonignorable Missing Outcomes	7 / 13

Setup

Randomized Experiments with Noncompliance

• Randomized "encouragement" design:

Randomized Experiments with Noncompliance

- Binary encouragement: $Z_i \in \{0, 1\}$.
- Potential binary treatments: $T_i(Z_i) \in \{0, 1\}$.
- Observed treatment: $T_i = Z_i T_i(1) + (1 Z_i) T_i(0)$.
- Potential outcomes: $Y_i(Z_i)$.
- Observed outcome: $Y_i = Z_i Y_i(1) + (1 Z_i) Y_i(0)$.
- Potential response indicators: $R_i(Z_i)$.
- Observed response indicator: $R_i = Z_i R_i(1) + (1 Z_i) R_i(0)$.
- Randomization of encouragement:

$$(Y_i(1), Y_i(0), T_i(1), T_i(0), R_i(1), R_i(0)) \perp Z_i,$$

• Intention-To-Treat (ITT) effect: $\tau_{ITT} \equiv E[Y_i(T_i(1), 1) - Y_i(T_i(0), 0)].$

Setup

Instrumental Variables (Angrist, Imbens & Rubin, 1996)

- Noncompliance
 - Complier: $T_i(1) = 1$ and $T_i(0) = 0$.
 - Noncomplier:
 - 1 Always-taker $(C_i = c)$: $T_i(1) = T_i(0) = 1$.
 - 2 Never-taker ($C_i = n$): $T_i(1) = T_i(0) = 0$.
 - 3 Defier $(C_i = d)$: $T_i(1) = 0$ and $T_i(0) = 1$.
- Assumptions:
 - 1 Monotonicity (no defier): $T_i(1) > T_i(0)$.
 - 2 Exclusion restriction for noncompliers: $Y_i(1) = Y_i(0)$ for $C_i = a, n$ (i.e., zero ITT effect for always-takers and never-takers).
- Complier Average Causal Effect (IV estimand):

$$au_{CACE} \equiv E[Y_i(1) - Y_i(0) \mid C_i = c] = \frac{E[Y_i(1) - Y_i(0)]}{E[T_i(1) - T_i(0)]}.$$

Kosuke Imai (Princeton University)

Nonignorable Missing Outcomes

Randomized Experiments with Noncompliance Identification and Estimation Strategies

Identification Strategies

• Ignorability (Yau & Little, 2001): For i = 0, 1 and l = 0, 1,

$$Pr(R_i(l) = 1 | Y_i(l) = 1, T_i(l) = j, Z_i = l, X_i = x)$$

=
$$Pr(R_i(l) = 1 | Y_i(l) = 0, T_i(l) = j, Z_i = l, X_i = x).$$

Latent Ignorability (Frangakis & Rubin, 1999): **1** Latent ignorability: For I = 0, 1 and $t \in \{c, n, a\}$,

> $Pr(R_i(I) = 1 | Y_i(I) = 1, Z_i = I, C_i = t, X_i = x)$ = $\Pr(R_i(I) = 1 | Y_i(I) = 0, Z_i = I, C_i = t, X_i = x).$

2 Compound exclusion restriction for noncompliers: $Y_i(0) = Y_i(1)$, and $R_i(1) = R_i(0)$, for $C_i = n, a$. • Nonignorability: For i = 0, 1, and k = 0, 1,

$$\Pr(R_i(1) = 1 \mid T_i(1) = j, Y_i(1) = k, Z_i = 1, X_i = x)$$

=
$$\Pr(R_i(0) = 1 \mid T_i(0) = j, Y_i(0) = k, Z_i = 0, X_i = x).$$

9/13

Theoretical Results in the Binary Case

- Apply the same analytical strategy as before.
- Define,

$$\begin{array}{rcl} \rho_{jkl} &\equiv & \mathsf{Pr}(\mathsf{Y}_i = \mathsf{1} \mid T_i = j, R_i = k, Z_i = l), \\ \pi_{jkl} &\equiv & \mathsf{Pr}(T_i = j, R_i = k, Z_i = l). \end{array}$$

• Rewrite the ITT effect as,

$$\tau_{ITT} = \frac{\sum_{j=0}^{1} \sum_{k=0}^{1} p_{jk1} \pi_{jk1}}{\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{jk1}} - \frac{\sum_{j=0}^{1} \sum_{k=0}^{1} p_{jk0} \pi_{jk0}}{\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{jk0}},$$

where π_{ikl} and p_{i1l} are identifiable, but p_{i0l} is not.

• Thus, the identification of τ_{ITT} requires four constraints (PROPOSITION 3).

Kosuke Imai (Princeton University)	Nonignorable Missing Outcomes	11 / 13

Randomized Experiments with Noncompliance Identification and Estimation Strategies

Inference and Sensitivity Analysis

• With no covariate:

- ML estimator and its asymptotic variance are in a closed-form.
- Sensitivity analysis parameters:

$$\psi_{jk}^{NI} \equiv \frac{\Pr(R_i(1) = 1 \mid T_i(1) = j, Y_i(1) = k, Z_i = 1)}{\Pr(R_i(0) = 1 \mid T_i(0) = j, Y_i(0) = k, Z_i = 0)},$$

• Modeling approach:

$$\begin{array}{rcl} p_{jl}(x) &\equiv & \Pr(Y_i = 1 \mid T_i = j, Z_i = l, X_i = x), \\ q_l(x) &\equiv & \Pr(T_i = 1 \mid Z_i = l, X_i = x), \\ r_{jk}(x) &\equiv & \Pr(R_i = 1 \mid T_i = j, Y_i = k, X_i = x). \end{array}$$

 $\tau_{ITT}(x) = [p_{11}(x)q_1(x) + p_{01}(x)\{1 - q_1(x)\}] - [p_{10}(x)q_0(x) + p_{00}(x)\{1 - q_0(x)\}]$

Concluding Remarks

Concluding Remarks

- Nonignorable missing data in randomized experiments.
- Identification and estimation strategies for randomized experiments with and without noncompliance.
- Sensitivity analyses to examine robustness of conclusiosns.

Kosuke Imai (Princeton University)

Nonignorable Missing Outcomes

13/13