Statistical Analysis of Randomized Experiments with "Truncation by Death"

Department of Politics Princeton University

August 31, 2007

- Sharp Bounds on the Causal Effects in Randomized Experiments with "Truncation-by-Death". Statistics & Probability Letters, Forthcoming.
- Identification Analysis for Randomized Experiments with Noncompliance and "Truncation-by-Death".

Introduction

What is "Truncation by Death"?

- Consider a randomized clinical trial
- Sample of very old and sick patients
- Treatment: a drug for hypertension
- Outcome of interest: blood pressure
- Problem: some patients died during the trial
- Blood pressure not defined for the dead!
- Analysis of the survivors leads to post-treatment bias
- Unless death occurs independent of the treatment

Motivating Example: Seguro Popular de Salud (SPS)

- Evaluation of the Mexican universal health insurance program (King et al., 2007)
- Aim: "provide social protection in health to the 50 million uninsured Mexicans" (Frenk *et al.*, 2003)
- Matched-pair, cluster randomized trials (Imai et al., 2007)
- Encouragement design: must affiliate to receive SPS services
- Noncompliance: always-takers and never-takers
- One outcome of interest: satisfaction with the received health care
- Satisfaction is undefined for those who have not been to clinics
- Skip-pattern questions in survey

Introduction

Additional Examples

- An Internet-based survey experiment before 2004 Japanese Upper House election (Horiuchi *et al.*, 2007)
- Causal effect of policy information on voting behavior
- Political party websites about pension policies
- Encouragement design: never-takers
- Questions of interest:
 - How many switched from LDP to DPJ (from DPJ to LDP)?
 - Provide the advantage of the second secon

Field	Treatment	Outcome	Truncation
Economics	job training	wages	unemployment
Education	teaching program	test scores	drop-out

Kosuke Imai (Princeton University)

Truncation by Death

5/13

The Analytical Approach and Contributions

Introduction

- How to avoid post-treatment bias in **conditional inference**?
- Use of principal stratification (Frangakis and Rubin 2002)
- Focus on those who would survive under **both** treatment and control conditions (Zhang and Rubin 2003)
- Identification analysis: derive sharp (best possible) bounds
- Formalize the derivation of the bounds in the literature
- Simplify the expressions
- Derive the sharp bounds on quantile TE as well as ATE
- Extend the results to experiments with noncompliance

Framework for Standard Randomized Experiments

- Causal inference via potential outcomes:
 - Binary treatments: $T_i \in \{0, 1\}$
 - Potential "truncation" variable: $W_i(T_i)$
 - Observed "truncation" variable: $W_i = T_i W_i(1) + (1 T_i) W_i(0)$
 - Potential outcomes: $Y_i(W_i, T_i)$
 - $Y_i(0, t)$ exists but $Y_i(1, t)$ does not
 - Observed outcome (defined only for $W_i = 0$): Y_i
- Randomized treatment:

$$(Y_i(0,0), Y_i(0,1), W_i(1), W_i(0)) \perp T_i$$
 for all *i*

- Estimands:
 - Average Treatment Effect (ATE):

$$au_{ATE} \equiv E[Y_i(0,1) - Y_i(0,0) \mid W_i(0) = 0, W_i(1) = 0]$$

• Quantile Treatment Effect (QTE):

$$\tau_{\mathsf{QTE}}(\alpha) = q_{\mathsf{00}|\mathsf{1}}(\alpha) - q_{\mathsf{00}|\mathsf{0}}(\alpha)$$

Kosuke Imai (Princeton University)

Truncation by Death

7/13

Standard Randomized Experiments

Identification Problem

• Identifiable distributions: for t = 0, 1

$$P_t \equiv P(y \mid W_i = 0, T_i = t)$$
 and $p_t \equiv Pr(W_i = 1 \mid T_i = t)$

• (Unidentifiable) Distributions of interest: $P_{00|1}$ and $P_{00|0}$ where

$$P_{w0|1} \equiv P(y(0,1) | W_i(0) = w, W_i(1) = 0, T_i = 1)$$

$$P_{0w|0} \equiv P(y(0,0) | W_i(0) = 0, W_i(1) = w, T_i = 0)$$

• What is the relationship?

$$P_{0} = \frac{\pi_{00}}{1-p_{0}}P_{00|0} + \left(1 - \frac{\pi_{00}}{1-p_{0}}\right)P_{01|0},$$

$$P_{1} = \frac{\pi_{00}}{1-p_{1}}P_{00|1} + \left(1 - \frac{\pi_{00}}{1-p_{1}}\right)P_{10|1},$$

• The sharp bounds of $\pi_{00} \equiv \Pr(W_i(0) = 0, W_i(1) = 0)$:

$$(0,1] \bigcap [1-p_0-p_1, \min(1-p_0,1-p_1)]$$

Truncation by Death

Theoretical Results

- Sharp bounds on τ_{ATE} and τ_{QTE} without assumptions
- Tighter (sharp) bounds under additional assumptions.
- Stochastic Dominance: for all $y \in \Omega$

$$\begin{array}{rcl} P_{00|0}[-\infty,y] &\leq & P_{01|0}[-\infty,y], \\ P_{00|1}[-\infty,y] &\leq & P_{10|1}[-\infty,y]. \end{array}$$

Those who always survive are healthier than those who sometimes die

- Monotonicity: $W_i \leq W_i(0)$. Treatment never kills people
- Bounds are in closed form if Monotonicity holds
- Under both assumptions, the naïve estimate is the lower bound

Kosuke Imai (Princeton University)

Truncation by Death

9 / 13

Randomized Experiments with Noncompliance

Extension to Experiments with Noncompliance

- Randomized "encouragement" design:
 - Binary encouragement: $Z_i \in \{0, 1\}$
 - Potential binary treatments: $T_i(Z_i) \in \{0, 1\}$
 - Observed treatment: $T_i = Z_i T_i(1) + (1 Z_i) T_i(0)$
 - Potential "truncation" variable: $W_i(T_i)$
 - Observed "truncation" variable: $W_i = T_i W_i(1) + (1 T_i) W_i(0)$
 - Potential outcomes: $Y_i(W_i, T_i)$
 - Observed outcome (defined only for $W_i = 0$): Y_i
- Randomization of encouragement:

$$(T_i(1), T_i(0), W_i(1), W_i(0), Y_i(0,0), Y_i(0,1)) \perp Z_i$$

• Intention-To-Treat (ITT) Effect:

$$\tau_{ITT} \equiv E[Y_i(1) - Y_i(0) \mid W_i(0) = 0, W_i(1) = 0]$$

Complier Average Causal Effect (CACE):

$$au_{CATE} \equiv E[Y_i(1) - Y_i(0) \mid W_i(0) = 0, W_i(1) = 0, C_i = c]$$

Randomized Experiments with Noncompliance

Identification Problem

- Monotonicity (No Defier): Angrist et al. (1996)
- Exclusion restriction for noncompliers:
 - $W_i(1) = W_i(0)$ for $C_i \in \{a, n\}$
- Identifiable distributions:

$$\begin{array}{rcl} P_{tz} &\equiv & P(y \mid W_i = 0, \, T_i = t, Z_i = z) \\ \rho_{jtz} &\equiv & \Pr(W_i = 1 \mid T_i = t, Z_i = z). \end{array}$$

• (Unidentifiable) Distributions of interest: $P_{c00|1}$ and $P_{c00|0}$ where

$$P_{sjk|z} = p(Y_i(j,k) | C_i = s, W_i(1) = j, W_i(0) = k, Z_i = z)$$

• What is the relationship?

$$\frac{p_{000}P_{00} - p_{001}P_{10}}{p_{000} - p_{001}} = \frac{\pi_{c00}}{p_{000} - p_{001}}P_{c00|0} + \left(1 - \frac{\pi_{c00}}{p_{000} - p_{001}}\right)P_{c01|0},$$

$$\frac{p_{011}P_{11} - p_{010}P_{01}}{p_{011} - p_{010}} = \frac{\pi_{c00}}{p_{011} - p_{010}}P_{c00|1} + \left(1 - \frac{\pi_{c00}}{p_{011} - p_{010}}\right)P_{c10|1}.$$

Kosuke Imai (Princeton University) Truncation by Death 11/13

Randomized Experiments with Noncompliance

Identification Analysis

Observed Strata	Principal Strata	
(W_i, T_i, Z_i)	$(C_i, W_i(0), W_i(1))$	
(0,0,0)	(n,0,0), (n,0,1), (c,0,0), (c,0,1)	
(0, 1, 0)	(a, 0, 0), $(a, 0, 1)$	
(1, 0, 0)	(n, 1, 0), (n, 1, 1), (c, 1, 0), (c, 1, 1)	
(1, 1, 0)	(<i>a</i> , 1, 0), (<i>a</i> , 1, 1)	
(0, 0, 1)	(n, 0, 0), (n, 1, 0)	
(0, 1, 1)	(a, 0, 0), (a, 1, 0), (c, 0, 0), (c, 1, 0)	
(1, 0, 1)	(n, 0, 1), (n, 1, 1)	
(1, 1, 1)	(a, 0, 1), (a, 1, 1), (c, 0, 1), (c, 1, 1)	

- Identification of π_{c00} as a **linear programming** problem
- Enumerate all vertices of the implied polyhedron
- Additional assumptions to point-identify $\pi_c 00$:
 - **1** Monotonicity: $W_i(1) \leq W_i(0)$ for all *i*

2 Stochastic Dominance:
$$P_{c00|z}[-\infty, y] \leq P_{c01|z}[-\infty, y]$$

Concluding Remarks

- "Truncation by death" frequently occurs even in non-medical experiments
- Naïve analysis would lead to post-treatment bias

Concluding Remarks

- Can't simply "control" for observed post-treatment variables
- Causal effects are not identifiable
- How much can we learn from the observed data?
- Propose analytical techniques to derive sharp bounds
- Various assumptions to tighten the bounds
- Ongoing project: measurement error in causal inference

Truncation by Death

13 / 13