Statistical Analysis of Causal Mechanisms

Kosuke Imai

Princeton University

November 17, 2008

Joint work with Luke Keele (Ohio State) and Teppei Yamamoto (Princeton)

Kosuke Imai (Princeton)

Causal Mechanisms

November 17, 2008 1 / 21

Statistics and Causal Mechanisms

- Causal inference as central goal of social science
- Challenge is how to identify causal mechanism
- Even randomized experiments can only determine *whether* the treatment causes changes in the outcome
- Not how and why the treatment affects the outcome
- Qualitative research uses process tracing
- How can quantitative research be used to identify causal mechanisms?

Overview of the Talk

- **Goal:** Convince you that statistics *can* play a role in identifying causal mechanisms
- Method: Causal Mediation Analysis

• Direct and indirect effects; intermediate and intervening variables

Kosuke Imai (Princeton)	Causal Mechanisms	November 17, 2008	3 / 21

Causal Mediation Analysis in American Politics

- The political psychology literature on media framing
- Nelson et al. (APSR, 1998)

Causal Mediation Analysis in Comparative Politics

Causal Mediation Analysis in International Relations

- The literature on international regimes and institutions
- Krasner (International Organization, 1982)

• Power and interests are mediated by regimes

Current Practice in the Discipline

• Regression

$$Y_i = \alpha + \beta T_i + \gamma M_i + \delta X_i + \epsilon_i$$

- Each coefficient is interpreted as a causal effect
- Sometimes, it's called marginal effect
- Idea: increase T_i by one unit while holding M_i and X_i constant
- The Problem (Post-treatment bias): if you change T_i, that may also change M_i
- Usual advice: only include causally prior (or pre-treatment) variables
- But, then you lose causal mechanisms!

Kosuke Imai (Princeton)

Causal Mechanisms

November 17, 2008 7 / 21

Formal Statistical Framework of Causal Inference

- Units: *i* = 1, ..., *n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Observed outcome: Y_i
- Pre-treatment covariates: X_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$ where $Y_i = Y_i(T_i)$

Voters	Contact	Turr	nout	Age	Party ID
i	T_i	$Y_{i}(1)$	$Y_{i}(0)$	X_i	X_i
1	1	1	?	20	D
2	0	?	0	55	R
3	0	?	1	40	R
÷	÷	÷	÷	÷	÷
п	1	0	?	62	D

• Causal effect: $Y_i(1) - Y_i(0)$

Identification of Causal Effects in Standard Settings

• Average Treatment Effect (ATE): $\tau \equiv \mathbb{E}(Y_i(1) - Y_i(0))$

• Randomized experiments:

- Randomization of the treatment: $(Y_i(1), Y_i(0)) \perp T_i$
- Identification:

$$\tau = \mathbb{E}(Y_i \mid T_i = 1) - \mathbb{E}(Y_i \mid T_i = 0)$$

Observational studies:

- No omitted variables (ignorability): $(Y_i(1), Y_i(0)) \perp T_i \mid X_i$
- Identification:

$$\tau = \mathbb{E}(Y_i \mid T_i = 1, X_i) - \mathbb{E}(Y_i \mid T_i = 0, X_i)$$

• Relationship with the regression:

$$Y_i(T_i) = \alpha + \beta T_i + \gamma X_i + \epsilon_i$$

where the assumption implies $T_i \perp \epsilon_i \mid X_i$

Kosuke Imai (Princeton)

Causal Mechanisms

November 17, 2008 9 / 21

Notation for Causal Mediation Analysis

- Binary treatment: $T_i \in \{0, 1\}$
- Mediator: M_i
- Outcome: Y_i
- Observed covariates: X_i
- Potential mediators: $M_i(t)$ where $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$ where $Y_i = Y_i(T_i, M_i(T_i))$

- Total causal effect: $\tau_i \equiv Y_i(1, M_i(1)) Y_i(0, M_i(0))$
- Causal mediation effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Change the mediator from M_i(0) to M_i(1) while holding the treatment constant at t
- Indirect effect of the treatment on the outcome through the mediator under treatment status *t*
- $Y_i(t, M_i(t))$ is observable but $Y_i(t, M_i(1 t))$ is not

Kosuke Imai (Princeton)	Causal Mechanisms	November 17, 2008	11 / 21

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Change the treatment from 0 to 1 while holding the mediator constant at M_i(t)
- Total effect = mediation (indirect) effect + direct effect:

$$\tau_i = \delta_i(t) + \zeta_i(1-t)$$

• Quantities of interest: Average Causal Mediation Effects,

$$\overline{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

Assumption 1 (Sequential Ignorability) $\{Y_i(t, m), M_i(t)\} \perp T_i \mid X_i,$ $Y_i(t, m) \perp M_i \mid T_i, X_i$

for t = 0, 1

- Existing statistics literature concludes that an additional assumption is required for the identification of mediation effects
- However, we show that sequential ignorability *alone* is sufficient
- Propose a nonparametric estimator and derive its asymptotic variance
- No functional and distributional assumption is required

Kosuke Imai (Princeton)

Causal Mechanisms

November 17, 2008 13 / 21

Identification under Linear Structural Equation Model

Theorem 1 (Identification under LSEM)

Consider the following linear structural equation model

 $\begin{aligned} M_i &= \alpha_2 + \beta_2 T_i + \epsilon_{2i}, \\ Y_i &= \alpha_3 + \beta_3 T_i + \gamma M_i + \epsilon_{3i}. \end{aligned}$

Under Assumption 1, the average causal mediation effects are identified as $\bar{\delta}(0) = \bar{\delta}(1) = \beta_2 \gamma$.

- Run two regressions and multiply two coefficients!
- Direct effect: β_3
- Total effect: $\beta_2 \gamma + \beta_3$
- If regressions are not linear (e.g., probit), then more complicated but can be done

- The sequential ignorability assumption is often too strong
- Need to assess the robustness of findings via sensitivity analysis
- Question: How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Parametric and nonparametric sensitivity analysis by assuming

$$\{Y_i(t,m), M_i(t)\} \perp T_i \mid X_i$$

but not

$$Y_i(t,m) \perp M_i \mid T_i, X_i$$

Kosuke Imai (Princeton)

Causal Mechanisms

November 17, 2008 15 / 21

Parametric Sensitivity Analysis

- Sensitivity parameter: $\rho \equiv Corr(\epsilon_{2i}, \epsilon_{3i})$
- Existence of omitted variables leads to non-zero ρ
- Set ρ to different values and see how mediation effects change
- All you have to do: fit another regression

$$Y_i = \alpha_3^* + \beta_3^* T_i + \epsilon_{3i}^*$$

in addition to the previous two regressions:

$$M_{i} = \alpha_{2} + \beta_{2} T_{i} + \epsilon_{2i}$$

$$Y_{i} = \alpha_{3} + \beta_{3} T_{i} + \gamma M_{i} + \epsilon_{3i}$$

 Estimated causal mediation effects as a function of ρ (and identifiable parameters)

Theorem 2 (Identification with a Given Error Correlation) Under Assumption 3,

$$\bar{\delta}(0) = \bar{\delta}(1) = \beta_2 \left(\frac{\sigma_{23}^*}{\sigma_2^2} - \frac{\rho}{\sigma_2} \sqrt{\frac{1}{1 - \rho^2} \left(\sigma_3^{*2} - \frac{\sigma_{23}^{*2}}{\sigma_2^2} \right)} \right),$$

where $\sigma_j^2 \equiv \operatorname{Var}(\epsilon_{ji})$ for j = 2, 3, $\sigma_3^{*2} \equiv \operatorname{Var}(\epsilon_{3i}^*)$, $\sigma_{23}^* \equiv \operatorname{Cov}(\epsilon_{2i}, \epsilon_{3i}^*)$, and $\epsilon_{3i}^* = \gamma \epsilon_{2i} + \epsilon_{3i}$.

- When do my results go away completely?
- $\bar{\delta}(t) = 0$ if and only if $\rho = \text{Corr}(\epsilon_{2i}, \epsilon_{3i}^*)$ (easy to compute!)

```
Kosuke Imai (Princeton)
```

Causal Mechanisms

November 17, 2008 17 / 21

Political Psychology Experiment: Nelson et al. (APSR)

- How does media framing affect citizens' political opinions?
- News stories about the Ku Klux Klan rally in Ohio
- Free speech frame ($T_i = 0$) and public order frame ($T_i = 1$)
- Randomized experiment with the sample size = 136
- Mediators: general attitudes (12 point scale) about the importance of free speech and public order
- Outcome: tolerance (7 point scale) for the Klan rally
- Expected findings: negative mediation effects

Analysis under Sequential Ignorability

	Mediator		
Estimator	Public Order	Free Speech	
Parametric			
No-interaction	-0.510	-0.126	
	[-0.969, -0.051]	[-0.388, 0.135]	
$\hat{\delta}(0)$	-0.451	-0.131	
	[-0.871, -0.031]	[-0.404, 0.143]	
$\hat{\delta}(1)$	-0.566	-0.122	
	[-1.081, -0.050]	[-0.380, 0.136]	
Nonparametric			
$\hat{\delta}(0)$	-0.374	-0.094	
	[-0.823, 0.074]	[-0.434, 0.246]	
$\hat{\delta}(1)$	-0.596	-0.222	
	[-1.168, -0.024]	[-0.662, 0.219]	

```
Kosuke Imai (Princeton)
```

Causal Mechanisms

November 17, 2008 19 / 21

Parametric Sensitivity Analysis

Parametric Analysis

Concluding Remarks and Future Work

- Quantitative analysis can be used to identify causal mechanisms!
- Estimate causal mediation effects rather than marginal effects
- Wide applications in social science disciplines
- Contribution to statistical literature:
 - Clarify assumptions
 - 2 Extend parametric method
 - Oevelop nonparametric method
 - Provide new sensitivity analysis

Kosuke Imai (Princeton)

Causal Mechanisms

November 17, 2008 21 / 21