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Political Data Science

Quantitative Social Science:

Causal inference revolution
Solve problems by working with governments, NGOs, industries

Experiments:

Multiple treatments and heterogenous treatment effects
Sequential experimental design: online experimental platform

Multi-armed Bandit Experiment:

Online learning
Select from a large set of treatments
Maximize cumulative rewards
Applications: election campaigns, conjoint analysis
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Detecting Irregularities

Examples:
1 Election irregularities (e.g., Ichino and Schündeln 2010; Mebane 2015)
2 Monitoring government corruption (e.g., Olken 2007)
3 Tax audit experiment (e.g., Slemrod et al 2001; Kleven et al 2011)

The Experiment:

a large insurance firm processing roadside and heath assistance claims
over 100 clerks handle about 1,000 claims each day
some claims contain “anomalies”
100 claims are audited every day

How to choose 100 claims for audit?
Goal: detect and correct as many anomalies as possible
Can the bandit algorithm detect more anomalies than experts?
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Multi-armed Bandit Problem

Setting:

M treatments or “arms”: Z = {z1, z2, · · · zM}
sequential sampling indexed by time: t = 1, 2, · · · ,T
treatment assignment: Zt

potential outcomes: Yt(z
m)

observed outcome: Yt = Yt(Zt)

Goal: maximize the cumulative reward
∑T

t=1 Yt

Multi-armed bandit algorithm  sequential treatment assignment
1 exploration: try unexplored arms to find a better treatment
2 exploitation: stay with the currently best performing treatment
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Upper Confidence Bound (UCB) Algorithm

nmt =
∑t

j=1 1{Zj = zm}: number of times arm zm has been assigned

Sample mean and variance for arm zm:

µ̂t,m ≡
1

nmt

t∑
j=1

1{Zj = zm}Yj , σ̂2t,m ≡
1

nmt

t∑
j=1

1{Zj = zm}(Yj−µ̂t,m)2

For the t + 1st sample, choose:

Zt+1 = argmax
m

{ µ̂t,m︸︷︷︸
exploitation

+ g(σ̂2t,m)︸ ︷︷ ︸
exploration

}

Different algorithm has a different form of g(·)
 if Yt | zm

i.i.d.∼ N (µm, σ
2
m), then

g(σ̂2t,m) =

√
σ̂2t,m

16 log(t − 1)

nm − 1
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Upper Confidence Bound (UCB) Algorithm

●

●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

g(σ̂
2)

µ̂

A B C

Egami, Ferrali and Imai (Princeton) Multi-armed Bandit Wash U. (May 12, 2016) 6 / 23



Upper Confidence Bound (UCB) Algorithm
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Linear Upper Confidence Bound (Linear UCB) Algorithm

Motivation: assign multiple treatments at once

Treatment vector: Zt ∈ Z
Outcome model:

E(Yt | Zt = z) = z>β

Estimate of β at each time t: β̂t

For the (t + 1)st sample, choose:

Zt+1 = argmax
z∈Z

{z>β̂t + g( ̂V(z>β̂t))}
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Experimental Evaluation of the Linear UCB Algorithm

Literature on the multi-armed bandit is largely theoretical

Many empirical applications in industry

Few applications published in academic journals

Experimental comparison between the linear UCB algorithm to experts

Replication data will be made available for future research

Expert auditors:
1 receive about 1,000 claims with their characteristics (only 3 variables!)
2 choose 20 claims that are “most likely” to contain anomalies

Linear UCB algorithm:
1 analyzes the same 1,000 claims with 37 characteristics
2 selects 20 claims that are “most likely” to contain anomalies

Each selected claim is examined for anomaly
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Linear UCB Algorithm for Anomaly Detection

Claim characteristics: Zt

Binary outcome: Yt = 1 (anomalous), Yt = 0 (otherwise)

Model:
Pr(Yt = 1 | Zt = z) = logit−1(z>β)

Estimate β using the logistic ridge regression:

β̂t = argmin
β

t∑
j=1

log(1 + exp{(1− 2Yj)β
>Zj}) + λ‖β‖22

λ is cross-validated with other data

For each claim at time t + 1, i.e., z ∈ Zt+1, compute upper
confidence index,

p(z) = logit−1(z>β̂t) + α
√
z>(Z(t)>Z(t) + λI)−1z

α is set to 1, which is a typical choice

Chose 20 claims with the greatest values of p(z)
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Bandit Beats Experts
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High-Dimensional Linear UCB Algorithm

Extend the Linear UCB algorithm to a high-dimensional setting:

Our application: variable selection by experts

What about other variables? Interactions?
 High-dimensional bandit

Sensitive to the tuning parameter α:

p(z) = logit−1(z>β̂t) +ααα
√
z>(Z(t)>Z(t) + λI)−1z

Cross-validation is too expensive

Variable selection removes this sensitivity
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Simulation Setting

Goal: Investigate the sensitivity to α

Outcome model: Pr(Yt = 1 | Zt) = probit(Z>t β)

Sample size: T = 3000

Compare 4 bandit algorithms:
1 Linear UCB (Li et al. 2010)
2 oracle-Linear UCB: known sparsity structure from the start
3 select-Linear UCB: variable selection at t = 500 out of T = 3, 000
4 oracle-Linear UCB*: oracle variable selection at t = 500

Change α from 0.01 to 2 following Li et al. (2010)

100 simulations for each α
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Simulation 1: Factorial randomized experiments

12 factors, each having 5 levels
3 factors and their two-way interactions are non-zero
44 non-zero coefficients among a total of 1,105 coefficients

Simulation 2: Independent discrete covariates

1,500 covariates
20 non-zero coefficients out of 1,500 coefficients
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Sensitivity of High-Dimensional Linear Bandit
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Variable Selection Removes Sensitivity
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Theory of Regret Bound

mean of M arms: {µ1, µ2, · · · , µM}
mean of the best arm: µ̃ = maxm µm
difference in means: ∆m = µ̃− µm
(Cumulative) regret:

RT ≡
T∑
t=1

M∑
j=1

1{Zt = zm}∆m

Expected regret E(RT ) of any algorithm is bounded below by
o(logT ) asymptotically (Lai and Robbins 1985)
What about the upper bound?
Example: UCB-Normal (Auer et al. 2002)

c1 logT
∑

m:µm 6=µ̃

σ2m
∆m︸ ︷︷ ︸

exploration

+(c2 + 8 logT )
M∑

m=1

∆m︸ ︷︷ ︸
exploitation
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Regret Bound for the Linear UCB with Variable Selection

Best treatment: z̃
Number of coefficients: d
Number of non-zero coefficients: s < d
Regret : RT ≡

∑T
t=1(z̃ − Zt)

>β
maximum instantaneous regret: r̃ = maxz(z̃ − z)>β ≤ 2 maxz |z>β|
T0: number of observations at the initialization stage
Ts : timing of variable selection
Bounds for expected regret:

B(RT ) = r̃T0 + 2r̃ + 2αααcd
√
d log3/2(T )

√
T︸ ︷︷ ︸

high dimensional bandit

B(Roracle
T ) = r̃T0 + 2r̃ + 2αααcs

√
s log3/2(T )

√
T︸ ︷︷ ︸

oracle bandit

B(Rselect
T ) = B(Roracle

T ) + Pr(incorrect selection)× r̃(T − Ts)
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Sensitivity to the Tuning Parameter

Result 1: Variable selection lowers the bounds:

B(Roracle
T ) ≤ B(Rselect

T ) ≤ B(RT )

Result 2: Variable selection reduces the sensitivity to α:

∂B(RT )

∂α
>

∂B(Rselect
T )

∂α
=

∂B(Roracle
T )

∂α
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Experimental Evaluation of High-Dimensional Bandit

3 bandit algorithms:
1 Low-dimensional bandit: 26 variables selected by experts
2 High-dimensional bandit: all main and 2-way interaction effects of 37

variables
3 Variable selection bandit: Lasso on High-dimensional bandit everyday

Procedure of multi-armed bandit algorithm:
1 each algorithm analyzes the same 1,000 claims
2 each selects 20 claims that are “most likely” to contain anomalies
3 all selected claims will be audited

Expert auditors follow the same protocol as before
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Preliminary Results
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Conclusion

Political data science:

Causal inference revolution, partnerships with non-academics
Causal heterogeneity  multiple treatments, online learning
Multi-armed bandit experiment

Experimental evaluation

Detecting irregularities
Bandit algorithm outperforms experts
On-going experiment: high-dimensional bandit

Theory: benefits of variable selection

High-dimensional bandit  sensitive to tuning parameter
Variable selection removes this sensitivity

Other applications: election campaign, conjoint analysis
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