Covariate Balancing Propensity Score

Kosuke Imai

Princeton University
May 8, 2013
Joint work with Marc Ratkovic and Christian Fong

References

(1) Main Paper: Imai, K. and Ratkovic, M. (2013). "Covariate Balancing Propensity Score" Journal of the Royal Statistical Society, Series B (Methodological), Forthcoming.
(2) Software: Ratkovic, M., K. Imai, C. Fong. (2013). CBPS: R Package for Covariate Balancing Propensity Score available for download at the CRAN

These and other related materials available at http://imai.princeton.edu

Motivation

- Causal inference is a central goal of scientific research
- Randomized experiments are not always possible \Longrightarrow Causal inference in observational studies
- Experiments often lack external validity \Longrightarrow Need to generalize experimental results
- Importance of statistical methods to adjust for confounding factors

Overview of the Talk

(1) Review: Propensity score

- propensity score is a covariate balancing score
- matching and weighting methods
(2) Problem: Propensity score tautology
- sensitivity to model misspecification
- adhoc specification searches
(3) Solution: Covariate balancing propensity score (CBPS)
- Estimate propensity score so that covariate balance is optimized
(4) Evidence: Reanalysis of two prominent critiques
- Improved performance of propensity score weighting and matching
(5) Software: R package CBPS
(6) Extension: General Treatment Regimes

Propensity Score

- Setup:
- $T_{i} \in\{0,1\}$: binary treatment
- X_{i} : pre-treatment covariates
- $\left(Y_{i}(1), Y_{i}(0)\right)$: potential outcomes
- $Y_{i}=Y_{i}\left(T_{i}\right)$: observed outcomes
- Definition: conditional probability of treatment assignment

$$
\pi\left(X_{i}\right)=\operatorname{Pr}\left(T_{i}=1 \mid X_{i}\right)
$$

- Balancing property (without assumption):

$$
T_{i} \Perp X_{i} \mid \pi\left(X_{i}\right)
$$

Rosenbaum and Rubin (1983)

- Assumptions:
(1) Overlap:

$$
0<\pi\left(X_{i}\right)<1
$$

(2) Unconfoundedness:

$$
\left\{Y_{i}(1), Y_{i}(0)\right\} \Perp T_{i} \mid X_{i}
$$

- Propensity score as a dimension reduction tool:

$$
\left\{Y_{i}(1), Y_{i}(0)\right\} \Perp T_{i} \mid \pi\left(X_{i}\right)
$$

Matching and Weighting via Propensity Score

- Propensity score reduces the dimension of covariates
- But, propensity score must be estimated (more on this later)
- Once estimated, simple nonparametric adjustments are possible
- Matching
- Subclassification
- Weighting (Horvitz-Thompson estimator):

$$
\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{T_{i} Y_{i}}{\hat{\pi}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) Y_{i}}{1-\hat{\pi}\left(X_{i}\right)}\right\}
$$

often, weights are normalized

- Doubly-robust estimators (Robins et al.):

$$
\frac{1}{n} \sum_{i=1}^{n}\left[\left\{\hat{\mu}\left(1, X_{i}\right)+\frac{T_{i}\left(Y_{i}-\hat{\mu}\left(1, X_{i}\right)\right)}{\hat{\pi}\left(X_{i}\right)}\right\}-\left\{\hat{\mu}\left(0, X_{i}\right)+\frac{\left(1-T_{i}\right)\left(Y_{i}-\hat{\mu}\left(0, X_{i}\right)\right)}{1-\hat{\pi}\left(X_{i}\right)}\right\}\right]
$$

- They have become standard tools for applied researchers

Propensity Score Tautology

- Propensity score is unknown
- Dimension reduction is purely theoretical: must model T_{i} given X_{i}
- Diagnostics: covariate balance checking
- In practice, adhoc specification searches are conducted
- Model misspecification is always possible
- Theory (Rubin et al.): ellipsoidal covariate distributions \Longrightarrow equal percent bias reduction
- Skewed covariates are common in applied settings
- Propensity score methods can be sensitive to misspecification

Kang and Schafer (2007, Statistical Science)

- Simulation study: the deteriorating performance of propensity score weighting methods when the model is misspecified
- Setup:
- 4 covariates X_{i}^{*} : all are i.i.d. standard normal
- Outcome model: linear model
- Propensity score model: logistic model with linear predictors
- Misspecification induced by measurement error:
- $X_{i 1}=\exp \left(X_{i 1}^{*} / 2\right)$
- $X_{i 2}=X_{i 2}^{*} /\left(1+\exp \left(X_{1 i}^{*}\right)+10\right)$
- $X_{i 3}=\left(X_{i 1}^{*} X_{i 3}^{*} / 25+0.6\right)^{3}$
- $X_{i 4}=\left(X_{i 1}^{*}+X_{i 4}^{*}+20\right)^{2}$
- Weighting estimators to be evaluated:
(1) Horvitz-Thompson
(2) Inverse-probability weighting with normalized weights
(3) Weighted least squares regression
(4) Doubly-robust least squares regression

Weighting Estimators Do Fine If the Model is Correct

Bias

Sample size	Estimator	GLM	True	GLM	True
(1) Both models correct					
	HT	0.33	1.19	12.61	23.93
$n=200$	IPW	-0.13	-0.13	3.98	5.03
	WLS	-0.04	-0.04	2.58	2.58
	DR	-0.04	-0.04	2.58	2.58
1000	HT	0.01	-0.18	4.92	10.47
	IPW	0.01	-0.05	1.75	2.22
	WLS	0.01	0.01	1.14	1.14
	DR	0.01	0.01	1.14	1.14

(2) Propensity score model correct

	HT	-0.05	-0.14	14.39	24.28
$n=200$	IPW	-0.13	-0.18	4.08	4.97
	WLS	0.04	0.04	2.51	2.51
	DR	0.04	0.04	2.51	2.51
$n=1000$	HT	-0.02	0.29	4.85	10.62
	IPW	0.02	-0.03	1.75	2.27
	WLS	0.04	0.04	1.14	1.14
	DR	0.04	0.04	1.14	1.14

Weighting Estimators are Sensitive to Misspecification

Bias

RMSE

Sample size	Estimator	GLM	True	GLM	True
(3) Outcome model correct					
$n=200$	HT	24.25	-0.18	194.58	23.24
	IPW	1.70	-0.26	9.75	4.93
	WLS	-2.29	0.41	4.03	3.31
	DR	-0.08	-0.10	2.67	2.58
$n=1000$	HT	41.14	-0.23	238.14	10.42
	IPW	4.93	-0.02	11.44	2.21
	WLS	-2.94	0.20	3.29	1.47
	DR	0.02	0.01	1.89	1.13
(4) Both models incorrect					
$n=200$	HT	30.32	-0.38	266.30	23.86
	IPW	1.93	-0.09	10.50	5.08
	WLS	-2.13	0.55	3.87	3.29
	DR	-7.46	0.37	50.30	3.74
$n=1000$	HT	101.47	0.01	2371.18	10.53
	IPW	5.16	0.02	12.71	2.25
	WLS	-2.95	0.37	3.30	1.47
	DR	-48.66	0.08	1370.91	1.81

Smith and Todd (2005, J. of Econometrics)

- LaLonde (1986; Amer. Econ. Rev.):
- Randomized evaluation of a job training program
- Replace experimental control group with another non-treated group
- Current Population Survey and Panel Study for Income Dynamics
- Many evaluation estimators didn't recover experimental benchmark
- Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):
- Apply propensity score matching
- Estimates are close to the experimental benchmark
- Smith and Todd (2005):
- Dehejia \& Wahba (DW)'s results are sensitive to model specification
- They are also sensitive to the selection of comparison sample

Propensity Score Matching Fails Miserably

- One of the most difficult scenarios identified by Smith and Todd:
- LaLonde experimental sample rather than DW sample
- Experimental estimate: \$886 (s.e. $=488$)
- PSID sample rather than CPS sample
- Evaluation bias:
- Conditional probability of being in the experimental sample
- Comparison between experimental control group and PSID sample
- "True" estimate $=0$
- Logistic regression for propensity score
- One-to-one nearest neighbor matching with replacement

Propensity score model	Estimates
Linear	-835
	(886)
Quadratic	-1620
	(1003)
Smith and Todd (2005)	-1910
	(1004)

Covariate Balancing Propensity Score

- Idea: Estimate the propensity score such that covariate balance is optimized
- Covariate balancing condition:

$$
\mathbb{E}\left\{\frac{T_{i} \widetilde{X}_{i}}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) \widetilde{X}_{i}}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0
$$

where $\widetilde{X}_{i}=f\left(X_{i}\right)$ is any vector-valued function

- Score condition from maximum likelihood:

$$
\mathbb{E}\left\{\frac{T_{i} \pi_{\beta}^{\prime}\left(X_{i}\right)}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) \pi_{\beta}^{\prime}\left(X_{i}\right)}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0
$$

Weighting to Balance Covariates

- Balancing condition: $\mathbb{E}\left\{\frac{T_{i} X_{i}}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) X_{i}}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0$

Generalized Method of Moments (GMM) Framework

- Just-identified CBPS: covariate balancing conditions alone
- Over-identified CBPS: combine them with score conditions
- GMM (Hansen 1982):

$$
\hat{\beta}_{\mathrm{GMM}}=\underset{\beta \in \Theta}{\operatorname{argmin}} \bar{g}_{\beta}(T, X)^{\top} \Sigma_{\beta}(T, X)^{-1} \bar{g}_{\beta}(T, X)
$$

where

$$
\bar{g}_{\beta}(T, X)=\frac{1}{N} \sum_{i=1}^{N} \underbrace{\binom{\text { score condition }}{\text { balancing condition }}}_{g_{\beta}\left(T_{i}, X_{i}\right)}
$$

- "Continuous updating" GMM estimator for Σ

Revisiting Kang and Schafer (2007)

Bias

Estimator GLM CBPS1 CBPS2 True

RMSE

GLM CBPS1 CBPS2 True
(1) Both models correct

$n=200$	HT	0.33	2.06	-4.74	1.19	12.61	4.68	9.33	23.93
	IPW	-0.13	0.05	-1.12	-0.13	3.98	3.22	3.50	5.03
	WLS	-0.04	-0.04	-0.04	-0.04	2.58	2.58	2.58	2.58
	DR	-0.04	-0.04	-0.04	-0.04	2.58	2.58	2.58	2.58
$n=1000$	HT	0.01	0.44	-1.59	-0.18	4.92	1.76	4.18	10.47
	IPW	0.01	0.03	-0.32	-0.05	1.75	1.44	1.60	2.22
	WLS	0.01	0.01	0.01	0.01	1.14	1.14	1.14	1.14
	DR	0.01	0.01	0.01	0.01	1.14	1.1	1.14	1.14
(2) Propensity score model correct									
$n=200$	HT	-0.05	1.99	-4.94	-0.14	14.39	4.57	9.39	24.28
	IPW	-0.13	0.02	-1.13	-0.18	4.08	3.22	3.55	4.97
	WLS	0.04	0.04	0.04	0.04	2.51	2.51	2.51	2.51
	DR	0.04	0.04	0.04	0.04	2.51	2.51	2.52	2.51
$n=1000$	HT	-0.02	0.44	-1.67	0.29	4.85	1.77	4.22	10.62
	IPW	0.02	0.05	-0.31	-0.03	1.75	1.45	1.61	2.27
	WLS	0.04	0.04	0.04	0.04	1.14	1.14	1.14	1.14
	DR	0.04	0.04	0.04	0.04	1.14	1.14	1.14	1.14

CBPS Makes Weighting Methods Work Better

Bias

Estimator GLM CBPS1 CBPS2 True

RMSE

GLM CBPS1 CBPS2 True

(3) Outcome model correct									
	HT	24.25	1.09	-5.42	-0.18	194.58	5.04	10.71	23.24
$n=200$	IPW	1.70	-1.37	-2.84	-0.26	9.75	3.42	4.74	4.93
	WLS	-2.29	-2.37	-2.19	0.41	4.03	4.06	3.96	3.31
	DR	-0.08	-0.10	-0.10	-0.10	2.67	2.58	2.58	2.58
$n=1000$	HT	41.14	-2.02	2.08	-0.23	238.14	2.97	6.65	10.42
	IPW	4.93	-1.39	-0.82	-0.02	11.44	2.01	2.26	2.21
	WLS	-2.94	-2.99	-2.95	0.20	3.29	3.37	3.33	1.47
	DR	0.02	0.01	0.01	0.01	1.89	1.13	1.13	1.13

(4) Both models incorrect

	HT	30.32	1.27	-5.31	-0.38	266.30	5.20	10.62	23.86
$n=200$	IPW	1.93	-1.26	-2.77	-0.09	10.50	3.37	4.67	5.08
	WLS	-2.13	-2.20	-2.04	0.55	3.87	3.91	3.81	3.29
	DR	-7.46	-2.59	-2.13	0.37	50.30	4.27	3.99	3.74
$n=1000$	HT	101.47	-2.05	1.90	0.01	2371.18	3.02	6.75	10.53
	IPW	5.16	-1.44	-0.92	0.02	12.71	2.06	2.39	2.25
	WLS	-2.95	-3.01	-2.98	0.19	3.30	3.40	3.36	1.47
	DR	-48.66	-3.59	-3.79	0.08	1370.91	4.02	4.25	1.81

CBPS Sacrifices Likelihood for Better Balance

Likelihood-Balance Tradeoff

Revisiting Smith and Todd (2005)

- Evaluation bias: "true" bias $=0$
- CBPS improves propensity score matching across specifications and matching methods
- However, specification test rejects the null

	1-to-1 Nearest Neighbor			Optimal 1-to-N Nearest Neighbor		
Specification	GLM	CBPS1	CBPS2	GLM	CBPS1	CBPS2
Linear	-1209.15	-654.79	-505.15	-1209.15	-654.79	-130.84
	(1426.44)	(1247.55)	(1335.47)	(1426.44)	(1247.55)	(1335.47)
Quadratic	-1439.14	-955.30	-216.73	-1234.33	-175.92	-658.61
	(1299.05)	(1496.27)	(1285.28)	(1074.88)	(943.34)	(1041.47)
Smith \& Todd	-1437.69	-820.89	-640.99	-1229.81	-826.53	-464.06
	(1256.84)	(1229.63)	(1757.09)	(1044.15)	(1179.73)	(1130.73)

Comparison with the Experimental Benchmark

- LaLonde, Dehejia and Wahba, and others did this comparison
- Experimental estimate: $\$ 866$ (s.e. $=488$)
- LaLonde+PSID pose a challenge: e.g., GenMatch -571 (1108)

	1-to-1		Nearest Neighbor	Optimal 1-to- N Nearest Neighbor		
Specification	GLM	CBPS1	CBPS2	GLM	CBPS1	CBPS2
Linear	-304.92	423.30	183.67	-211.07	423.30	138.20
	(1437.02)	(1295.19)	(1240.79)	(1201.49)	(1110.26)	(1161.91)
Quadratic	-922.16	239.46	1093.13	-715.54	307.51	185.57
	(1382.38)	(1284.13)	(1567.33)	(1145.82)	(1158.06)	(1247.99)
Smith \& Todd	-734.49	-269.07	423.76	-439.54	-617.68	690.09
	(1424.57)	(1711.66)	(1404.15)	(1259.28)	(1438.86)	(1288.68)

Software: R Package CBPS

```
## upload the package
library("CBPS")
## load the LaLonde data
data(LaLonde)
## Estimate ATT weights via CBPS
fit <- CBPS(treat ~ age + educ + re75 + re74 +
                                    I(re75==0) + I(re74==0),
data = LaLonde, ATT = TRUE)
summary(fit)
## matching via MatchIt
library(MatchIt)
## one to one nearest neighbor with replacement
m.out <- matchit(treat ~ 1, distance = fitted(fit),
                                    method = "nearest", data = LaLonde,
                                    replace = TRUE)
summary(m.out)
```


Extensions to Other Causal Inference Settings

- Propensity score methods are widely applicable
- This means that CBPS is also widely applicable
- Non-binary treatment regimes
- Imai, K. and van Dyk, D. (2004). "Causal Inference with General Treatment Regimes: Generalizing the Propensity Score" Journal of the American Statistical Association
- Challenge: many treatment groups \Longrightarrow covariate balance checking is difficult
- Estimate the generalized propensity score such that covariate is balanced across all treatment groups

Multi-valued Categorical Treatment

- Propensity score for each value:

$$
\pi_{\beta}\left(t, X_{i}\right)=\operatorname{Pr}\left(T_{i}=t \mid X_{i}\right)
$$

- Commonly used model: multinomial logistic regression
- CBPS: balance covariates across all groups

$$
\mathbb{E}\left\{\frac{1\left\{T_{i}=t\right\} X_{i}}{\pi_{\beta}\left(t, X_{i}\right)}\right\}=\mathbb{E}\left\{\frac{1\left\{T_{i}=t^{\prime}\right\} X_{i}}{\pi_{\beta}\left(t^{\prime}, X_{i}\right)}\right\}
$$

- Orthogonalize the conditions when the number of groups is 2^{J}
- Estimation of ATE: weighting or multi-dimensional matching/subclassification

Continuous and Other Treatments

- Generalized propensity score:

$$
\pi_{\beta}\left(t, X_{i}\right)=p\left(T_{i}=t \mid X_{i}\right)
$$

- Propensity function: $\psi_{\beta}\left(X_{i}\right)$ where $p_{\psi}\left(T_{i}=t \mid X_{i}\right)$
- Commonly used models: linear regression, GLMs

$$
\pi_{\beta}\left(t, X_{i}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(t-X_{i}^{\top} \beta\right)^{2}\right\}, \quad \psi_{\beta}\left(X_{i}\right)=X_{i}^{\top} \beta
$$

- CBPS: balance covariates across discretized treatment categories
- Estimation of causal effects:
- subclassification on propensity function (Imai and van Dyk)
- subclassification on treatment (Zhao, van Dyk, and Imai)
- smooth coefficient model (Zhao, van Dyk, and Imai)

Concluding Remarks

- Covariate balancing propensity score:
(1) simultaneously optimizes prediction of treatment assignment and covariate balance under the GMM framework
(2) is robust to model misspecification
(3) improves propensity score weighting and matching methods
- Extensions:
(1) Non-binary treatment regimes
(2) Dynamic treatment regimes in longitudinal analysis
(3) Generalizing experimental estimates
(4) Generalizing instrumental variable estimates
(5) Weighting methods for causal mediation analysis
(6) Model and confounder selection in a high-dimensional setting

