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Introduction



@ What is “matching”?
@ Grouping observations based on their observed characteristics

@ pairing
@ subclassification
© subsetting

@ What is “weighting”?
@ Replicating observations based on their observed characteristics
@ All types of matching are special cases with discrete weights

@ What matching and weighting methods can do: flexible and robust
causal modeling under selection on observables

@ What they cannot do: eliminate bias due to unobserved
confounding



@ Units:i=1,...,n

@ “Treatment”: T; = 1 if treated, T; = 0 otherwise

@ Observed outcome: Y;

@ Pre-treatment covariates: X;

@ Potential outcomes: Y;(1) and Y;(0) where Y; = Yi(T;)

Patients Treatment Survival Age Gender
i T YD) YO X X
1 1 1 ? 20 F
2 0 ? 0 55 M
3 0 ? 1 40 M
n 1 0 ? 62 F

@ Causal effect: Y;(1) — Yi(0)



@ The notation implies three assumptions:

@ No simultaneity (different from endogeneity)
@ No interference between units: Yi(Ty, To,..., Tp) = Yi(T))
© Same version of the treatment

@ Stable Unit Treatment Value Assumption (SUTVA)
@ Potential violations:

@ feedback effects
@ spill-over effects, carry-over effects
@ different treatment administration

@ Potential outcome is thought to be “fixed”: data cannot distinguish
fixed and random potential outcomes

@ Potential outcomes across units have a distribution
@ Observed outcome is random because the treatment is random

@ Multi-valued treatment: more potential outcomes for each unit



@ Sample Average Treatment Effect (SATE):

Z (1) -
@ Population Average Treatment Effect (PATE):
E(Yi(1) - Yi(0))
@ Population Average Treatment Effect for the Treated (PATT):
E(Yi(1) = Yi(0) | Ti = 1)

@ Treatment effect heterogeneity: Zero ATE doesn’t mean zero
effect for everyone! —> Conditional ATE

@ Other quantities: Quantile treatment effects etc.



Randomized Experiments
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@ Units:i=1,...,n

@ May constitute a simple random sample from a population
@ Treatment: T; € {0,1}

@ Outcome: Y; = Yi(T))

@ Complete randomization of the treatment assignment

@ Exactly ny units receive the treatment

@ ng = n— ny units are assigned to the control group

@ Assumption: foralli=1,...,n, 37, T; = ny and
n
(Yi(1). Yi(0) L Ti Pr(Ti=1)= "
@ Estimand = SATE or PATE
@ Estimator = Difference-in-means:
1 n 1 n
F= X TYi- ) (1= T)Y,

i=1

i=1



@ Key idea (Neyman 1923): Randomness comes from treatment
assignment (plus sampling for PATE) alone

@ Design-based (randomization-based) rather than model-based
@ Statistical properties of 7 based on design features

@ Define O = {Yi(0), Yi(1)},
@ Unbiasedness (over repeated treatment assignments):

E(F]10) = —ZETIO)Y(1)——OZ{1—E(TIO)}Y(0)

i=1

= _Z(YU Y;(0)) = SATE

@ Over repeated sampling: E(7) = E(E(7 | O)) = E(SATE) = PATE



@ The model: Y; = a+ 5T+ ¢ where E(¢;) =0
@ Equivalence: least squares estimate 5 =Difference in means

@ Potential outcomes representation:
Yi(Ti) = a+ BT+ €

@ Constant additive unit causal effect: Y;(1) — Y;(0) = g for all i
o a=E(Y(0))

@ A more general representation:
Yi(T)) = a+ BTi+€i(T;) where E(e(t))=0

@ Yj(1) - Yi(0) = B +€i(1) — €(0)
® 3 =E(Yi(1) - Yi(0))
@ a = E(Y;(0)) as before



@ The design-based perspective: use Neyman’s exact variance
@ What is the bias of the model-based variance estimator?
@ Finite sample bias:

A2 2 2
Bias = E - g — B + %
>im(Ti— Tn)2 4 Mo

(n1 _ nO)(n_ 1)(0_2 _ 0_2)
nng(n—2) 1 70

e Bias is zero when ny = ng or 0% = 03

@ In general, bias can be negative or positive and does not
asymptotically vanish



@ Suppose Var(e; | T) = 0?(T;) # 02
@ Heteroskedasticity consistent robust variance estimator:

n —1 n n -1
Var((&, B) | T) = <Z xix;" > <Z é,?x,vx,-T> (Z x,-x,-T)
i=1 i=1 i=1

where in this case x; = (1, T;) is a column vector of length 2

@ Model-based justification: asymptotically valid in the presence of
heteroskedastic errors

@ Design-based evaluation:

2 2

.. . g 1 g, 0
Finite Sample Bias = — -+
I71 nO

@ Bias vanishes asymptotically



@ Matching can be used for randomized experiments too!
@ Randomization of treatment — unbiased estimates

@ Improving efficiency — reducing variance

@ Why care about efficiency? You care about your results!

@ Randomized matched-pair design
@ Randomized block design

@ Intuition: estimation uncertainty comes from pre-treatment
differences between treatment and control groups

@ Mantra (Box, Hunter, and Hunter):
“Block what you can and randomize what you cannot”



@ Units: i=1,2,...,n

@ Clusters of units: j=1,2,....m

@ Treatment at cluster level: T; € {0,1}

@ Outcome: Y = Yj(T))

@ Random assignment: (Yji(1), Y;;(0)) 1L T;
@ Estimands at unit level:

m

SATE = Z ZZ(YU — Y;(0))
j=1 /, 1 i=1
PATE = E(Y;(1) - Y;(0))

@ Random sampling of clusters and units



@ Interference between units within a cluster is allowed
@ Assumption: No interference between units of different clusters
@ Often easier to implement: Mexican health insurance experiment

@ Opportunity to estimate the spill-over effects

@ D. W. Nickerson. Spill-over effect of get-out-the-vote canvassing
within household (APSR, 2008)

@ Limitations:

@ A large number of possible treatment assignments
@ Loss of statistical power



@ For simplicity, assume equal cluster size, i.e., n; = nfor all j
@ The difference-in-means estimator:
1 m
— Y, — — 1-T)Y;
2 Z( /)

T =

where 7/' = 27]:1 Y,j/nj
@ Easy to show E(7 | O) = SATE and thus E(7) = PATE
@ Exact population variance:

var((1)) , Var(¥(0))
my mq

Var(7)

@ Intracluster correlation coefficient p;:

0.2
Var(Yj(t)) = Ftﬂ +(n—1)p} < of
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@ Cluster robust “sandwich” variance estimator:
-1 —1
S m m m
Var((6,8) | T) = (ZX,-TX/) (ZXTe,e X) (ZXFXJ-)
j=1 Jj=1 Jj=1

where in this case X; = [1T}] is an n; x 2 matrix and
&= (&jy-- -, €,,j/-) is a column vector of length n;

@ Design-based evaluation (assume n; = n for all j):

Finite Sample Bias = — (V( Y/S ) V(Y(O))>
my m0

@ Bias vanishes asymptotically as m — oo with n fixed
@ Implication: cluster standard errors by the unit of treatment
assignment



@ Evaluation of the Mexican universal health insurance program

@ Aim: “provide social protection in health to the 50 million
uninsured Mexicans”

@ A key goal: reduce out-of-pocket health expenditures

@ Sounds obvious but not easy to achieve in developing countries
@ Individuals must affiliate in order to receive SPS services

@ 100 health clusters non-randomly chosen for evaluation

@ Matched-pair design: based on population, socio-demographics,
poverty, education, health infrastructure etc.

@ “Treatment clusters”: encouragement for people to affiliate
@ Data: aggregate characteristics, surveys of 32, 000 individuals



@ Okay, but how should | match/block without the treatment group?

@ Goal: match/block well on powerful predictors of outcome
(prognostic factors)

@ (Coarsened) Exact matching
@ Matching based on a similarity measure:

Mahalanobis distance = \/ (Xi — Xj)Tf—1 (Xi— X))

@ Could combine the two



@ Compare with completely-randomized design
@ Greater (positive) correlation within pair — greater efficiency
@ PATE: MPD is between 1.8 and 38.3 times more efficient!

30
1

Relative Efficiency, PATE

10 20
1 1

Relative Efficiency, UATE



Cross-sectional Observational Studies
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@ Randomized experiments vs. Observational studies

@ Tradeoff between internal and external validity

o Endogeneity: selection bias
o Generalizability: sample selection, Hawthorne effects, realism

@ Statistical methods cannot replace good research design
@ “Designing” observational studies

o Natural experiments (haphazard treatment assignment)
e Examples: birthdays, weather, close elections, arbitrary
administrative rules and boundaries

@ “Replicating” randomized experiments

@ Key Questions:

@ Where are the counterfactuals coming from?
@ Is it a credible comparison?
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@ Assumption 1: Overlap (i.e., no extrapolation)
O0<Pr(Ti=1]Xi=x)<1forany x € X

@ Assumption 2: Ignorability (exogeneity, unconfoundedness, no
omitted variable, selection on observables, etc.)

{Yi(1), Yi(0)} 1L Ty | X; = x forany x € X
@ Conditional expectation function: u(t,x) = E(Y;(t) | Ti = t, Xi = x)
@ Regression-based estimator:

s :_72{,;(1,)0) — (0, X))}
i=1

@ Delta method is pain, but simulation is easy via Zelig



@ How most social scientists do empirical analysis:
@ collect the data spending months or years
@ finish recording and merging
@ sit in front of your computer with nobody to bother you
© run one regression
@ run another regression with different control variables
@ run another regression with different functional forms
@ run another regression with different measures
@ run yet another regression with a subset of the data
@ end up with 100 or 1000 different estimates
@ put 5 regression results in the paper

@ What'’s the problem?
e “correct” specification is chosen after looking at the estimates
e to readers of an article, it's never clear whether it represents a true
test of an ex ante hypothesis or merely shows it's possible to find
such results
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READING: Ho et al. Political Analysis (2007)

Assume exogeneity holds: matching does NOT solve endogeneity
Need to model E(Y; | T;, Xi)

Parametric regression — functional-form/distributional assumptions
= model dependence

Non-parametric regression = curse of dimensionality

Preprocess the data so that treatment and control groups are
similar to each other w.r.t. the observed pre-treatment covariates

Goal of matching: achieve balance = independence between T
and X

“Replicate” randomized treatment w.r.t. observed covariates
Reduced model dependence: minimal role of statistical modeling



@ An artificial data set with one control variable

@ Fit two regressions (with/without a quadratic term) before and
after matching

Before Matching After Matching

! —— Linear Model, Treated Group — Linear Model, Treated Group
s c Linear Model, Control Group s © Linear Model, Control Group
‘ = = Quadratic Model, Treated Group ~ - Quadratic Model, Treated Group
Quadratic Model, Control Group Quadratic Model, Control Group
o_| o_|
3 8 3 8
T T T T T T T T T T T T T T T T
-5 0 5 10 15 20 2 30 -5 0 5 10 15 20 2 30
X X



@ Consider a simple pair-matching of treated and control units
@ Assumption: treatment assignment is “random”
@ Difference-in-means estimator

Question: How large a departure from the key (untestable)
assumption must occur for the conclusions to no longer hold?

@ Rosenbaum’s sensitivity analysis: for any pair /,
1 Pr(7'1,=1)/Pr(T1j:0)

- < <T
r - Pr(ng:1)/Pr(T2j:O) B

@ Under ignorability, ' = 1 for all j

@ How do the results change as you increase I'"?

@ Limitations of sensitivity analysis

@ FURTHER READING: P. Rosenbaum. Observational Studies.
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@ The probability of receiving the treatment:
n(X) = Pr(Ti=1]X)
@ The balancing property (no assumption):
T AL X[ w(X)

@ Exogeneity given the propensity score (under exogeneity given
covariates):

(Yi(1), Yi(0)) L T; | =(Xi)

@ Dimension reduction
@ But, true propensity score is unknown: propensity score tautology
(more later)



Exact matching

Mahalanobis distance matching: 1/(X; — X)) TE~1(X; — X))
Propensity score matching

One-to-one, one-to-many, and subclassification

Matching with caliper

Which matching method to choose?
Whatever gives you the “best” balance!

Importance of substantive knowledge: propensity score matching
with exact matching on key confounders

FURTHER READING: Rubin (2006). Matched Sampling for Causal
Effects (Cambridge UP)



Success of matching method depends on the resulting balance
How should one assess the balance of matched data?

Ideally, compare the joint distribution of all covariates for the
matched treatment and control groups

In practice, this is impossible when X is high-dimensional

Check various lower-dimensional summaries; (standardized)
mean difference, variance ratio, empirical CDF, etc.

Frequent use of balance test
o t test for difference in means for each variable of X
e other test statistics; e.g., x?, F, Kolmogorov-Smirnov tests
o statistically insignificant test statistics as a justification for the
adequacy of the chosen matching method and/or a stopping rule for
maximizing balance
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@ Balance test is a function of both balance and statistical power
@ The more observations dropped, the less power the tests have
o f-testis affected by factors other than balance,

\/ (Ymt - )_(mc)
s?nt + 1smc

Xm: and X e are the sample means

s2, and s, are the sample variances

nm is the total number of remaining observations

Irm is the ratio of remaining treated units to the total number of
remaining observations



@ The main problem of matching: balance checking
@ Skip balance checking all together
@ Specify a balance metric and optimize it

@ Optimal matching: minimize sum of distances

@ Full matching: subclassification with variable strata size

@ Genetic matching: maximize minimum p-value

@ Coarsened exact matching: exact match on binned covariates

@ SVM subsetting: find the largest, balanced subset for general
treatment regimes

@ Software: Matchlt implements various algorithms

@ Another problem of matching: hard to balance in a small sample



@ Matching is inefficient because it throws away data
@ Matching is a special case of weighting
@ Weighting by inverse propensity score (Horvitz-Thompson):

1 Z TY,  (1-TyY
n < (X)) 1 —#7(X)
@ Unstable when some weights are extremely small
@ An improved weighting scheme with normalized weights:

Y ATYi/a(X)} - S A0 = T)Yi/(1 = #(X)}
YiaAT/a(X)r  ELA0 - T)/(1 = #(X)}




@ Balancing condition: E {WT(’))((,’) - —(11__7:('))(7;'} =0

© -

/7
ATE weighted 7 ATE weighted
Control units _ * Treated units




@ Balancing condition: E{T,-X,- — ML&TS)X’} =0

—m(Xj

© -

\ ATT weighted
\ Control units

Treated units




@ The estimator by Robins et al. :

= (i R0

i=1

1N 1<~ (1= T)(Yi— 40, X;

i=1

@ Consistent if either the propensity score model or the outcome
model is correct

@ (Semiparametrically) Efficient
@ FURTHER READING: Lunceford and Davidian (2004, Stat. in Med.)



@ Propensity score is unknown

@ Dimension reduction is purely theoretical: must model T; given X;
@ Diagnostics: covariate balance checking

@ In practice, adhoc specification searches are conducted

@ Model misspecification is always possible

@ Tautology: propensity score works only when you get it right!

@ In fact, estimated propensity score works even better than true
propensity score when the model is correct

@ Theory (Rubin et al.): ellipsoidal covariate distributions
= equal percent bias reduction

@ Skewed covariates are common in applied settings

@ Propensity score methods can be sensitive to misspecification



@ Simulation study: the deteriorating performance of propensity
score weighting methods when the model is misspecified

@ Setup:
@ 4 covariates X;*: all are i.i.d. standard normal

Outcome model: linear model
Propensity score model: logistic model with linear predictors
Misspecification induced by measurement error:

° Xi = exp(X;i/2)

® X = Xp/(1+exp(Xi;) +10)

® X = (XiX;/25+0.6)°

® Xia = (X + Xis + 20)?

@ Weighting estimators to be evaluated:
@ Horvitz-Thompson
@ Inverse-probability weighting with normalized weights
© Weighted least squares regression
© Doubly-robust least squares regression



Bias RMSE
Sample size  Estimator GLM True GLM True
(1) Both models correct
HT 0.33 1.19 12.61 23.93
IPW -0.13 -0.13 3.98 5.03

n =200 WLS -004 004 258 258
DR -004 -004 258 258
HT 001 —018 492 1047
1000 IPW 001 -005 175 222

WLS 0.01 0.01 1.14 1.14
DR 0.01 0.01 1.14 1.14

(2) Propensity score model correct
HT -032 -0.17 12.49 23.49
IPW  -0.27 -0.35 3.94 4.90

n =200 WLS -007 -007 259 259
DR -007 -007 259 259
HT 003 0.01 493 1062
— 1000 IPW —002 -004 176 226

WLS  -0.01 —0.01 1.14 1.14
DR —0.01 —0.01 1.14 1.14




Bias RMSE
Sample size  Estimator GLM True GLM True
(3) Outcome model correct
HT 24.25 -0.18 194.58 23.24

n— 200 IPW 1.70 —0.26 9.75 4.93
WLS —2.29 0.41 4.03 3.31

DR —0.08 —0.10 2.67 2.58

HT 41.14 —-0.23 238.14 10.42

n — 1000 IPW 4.93 —0.02 11.44 2.21
WLS —2.94 0.20 3.29 1.47

DR 0.02 0.01 1.89 1.13

(4) Both models incorrect
HT 30.32 —0.38 266.30 23.86

n — 200 IPW 1.93 —0.09 10.50 5.08
WLS —2.13 0.55 3.87 3.29

DR —7.46 0.37 50.30 3.74

HT  101.47 0.01 2371.18 10.53

n = 1000 IPW 5.16 0.02 12.71 2.25
WLS —2.95 0.19 3.30 1.47

DR —48.66 0.08 1370.91 1.81
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@ Recall the dual characteristics of propensity score
@ Conditional probability of treatment assignment
@ Covariate balancing score

@ Implied moment conditions:
@ Score equation:

. { Tah(X) (1- T,-)w;a(x;)}

m3(Xi) 1 —7s(Xi)

@ Balancing condition:

TX  (1-T)Xi| _
E{wm) 1—m(x,-)} -0

where )~(, = f(X;) is any vector-valued function
@ Score condition is a particular covariate balancing condition!



@ Just-identified CBPS:
e Find the values of model parameters that satisfy covariate
balancing conditions in the sample
o Method of moments: # of parameters = # of balancing conditions

@ Over-identified CBPS:

e # of parameters < # of balancing conditions
o Generalized method of moments (GMM):

B = argmin 95(T. X)"'55'95(T, X)
seo

where

Timp(X)  (1=Ti)7wp(X) )
(X))  1-mg(X)

N
1 _
5 _ X)) T I—ma(x)
95(T. %) = NZ( TIx_ (-T)%
i=1

and Xz is the covariance of moment conditions
e Enables misspecification test



Bias RMSE
Sample size Estimator GLM CBPS1 CBPS2 True | GLM CBPS1 CBPS2 True
(1) Both models correct
HT 0.33 2.06 —4.74 1.19| 1261 468 9.33 23.93
IPW -0.13 0.05 —1.12 —-0.13] 3.98 322 350 5.03

n =200 WLS -0.04 —0.04 —0.04 —0.04| 258 258 258 258
DR —0.04 —0.04 —0.04 —0.04| 258 258 258 258
HT 0.01 044 —-159 -0.18| 492 176 4.18 1047
n— 1000 IPW 0.01 0.03 -0.32 —0.05| 1.75 144 160 222

WLS 0.01 0.01 0.01 o0.01| 114 114 114 1.14
DR 0.01 0.01 0.01 0.01] 1.14 114 114 1.14
(2) Propensity score model correct
HT —-0.05 199 —-494 —0.14|/ 1439 457 9.39 2428
IPW -0.13 0.02 —-1.13 -0.18| 4.08 3.22 3.55 4.97

n =200 WLS 0.04 0.04 0.04 0.04f 251 251 251 251
DR 0.04 0.04 0.04 0.04f 251 251 251 251
HT —0.02 044 —-1.67 0.29| 485 177 422 10.62
n — 1000 IPW 0.02 0.05 -0.31 -0.03| 1.756 145 161 227

WLS 0.04 0.04 004 0.04f 114 114 114 1.14
DR 0.04 004 004 0.04 114 114 114 1.14




Bias RMSE
Sample size Estimator GLM CBPS1 CBPS2 True GLM CBPS1 CBPS2 True
(3) Outcome model correct
HT 2425 1.09 —542 —0.18| 194.58 5.04 10.71 23.24
IPW 1.70 —1.37 —2.84 —0.26 9.75 3.42 4.74 493

n =200 WLS  -229 -237 219 041| 403 406 3.96 3.31
DR  -008 -010 —0.10 —0.10| 267 258 258 258
HT 4114 —2.02 208 023 23814 297 665 1042
o_1o00 PW 493 139 082 002 1144 201 226 221

WLS —294 —-299 -295 0.20 3.29 3.37 3.33 147
DR 0.02 0.01 0.01 0.01 1.89 113 1.13 1.13
(4) Both models incorrect
HT 30.32 1.27 -5.31 —0.38| 266.30 5.20 10.62 23.86
IPW 193 —1.26 —2.77 —0.09| 10.50 3.37 4.67 5.08

n =200 WLS —213 —-2.20 -2.04 0.55 3.87 3.91 381 329
DR —7.46 —259 -2.13 0.37| 50.30 427 399 3.74
HT 10147 —-2.05 1.90 0.01|2371.18 3.02 6.75 10.53
n = 1000 IPW 516 —1.44 -0.92 0.02| 12.71 206 239 225

WLS —295 -3.01 —2.98 0.19 3.30 3.40 3.36 147
DR 4866 —-3.59 —3.79 0.08/1370.91 402 425 181




Likelihood—-Balance

Log-Likelihood Covariate Imbalance Tradeoff
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@ Bias of IPTW estimator when the propensity score is misspecified:

bias = E[<ﬂﬂoT('}g)_1j7:go?X)>

x{ w0 (XDE(Y(0) | X) + (1 = mao(XDE(Y/(1) | X))}

where /3° is the asymptotic limit of 3 under misspecification

@ Balancing this weighted average leads to unbiased and efficient
estimator

@ Outcome model matters



Longitudinal Observational Studies
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@ Linear fixed effects regression models are the primary workhorse
for causal inference with panel data

@ Researchers use them to adjust for unobserved confounders
(omitted variables, endogeneity, selection bias, ...):

e “Good instruments are hard to find ..., so we’d like to have other
tools to deal with unobserved confounders. This chapter considers
... Strategies that use data with a time or cohort dimension to
control for unobserved but fixed omitted variables”

(Angrist & Pischke, Mostly Harmless Econometrics)

o “fixed effects regression can scarcely be faulted for being the
bearer of bad tidings” (Green et al., Dirty Pool)



@ What make it possible for fixed effects regression models to adjust
for unobserved confounding?

© Are there any trade-offs when compared to the
selection-on-observables approaches such as matching?

© What are the exact causal assumptions underlying fixed effects
regression models?



@ Balanced panel data with N units and T time periods
@ Yj: outcome variable
@ Xj: causal or treatment variable of interest

@ Model:
Yi = o+ BXit+eir
@ Estimator: “de-meaning”

Pre = argmanZ{(Y,, — B(Xie — Xi)}?

i=1 t=1

where X; and Y; are unit-specific sample means



E(eit | Xi,e) = 0

where X; is a T x 1 vector of treatment variables for unit i

@ U;: a vector of time-invariant unobserved confounders
@ «; = h(U;) for any function h(-)

@ A flexible way to adjust for unobservables



Treatments do not directly affect future outcomes

Yie(Xit, Xig, .., Xit—1, Xit) = Yu(Xi)

@ Potential outcome model:

Yi(x) = «ai+fx+eyp forx=0,1
@ Average treatment effect:

= E(Y(1)-Ya(0)| Ci=1) = B

where C; = 1{0 < Z,L Xi < T}



@ arrow = direct causal effect

@ absence of arrows
~» causal assumptions




Adding a red dashed
arrow violates strict
exogeneity

Nonparametric SEM (Pearl)
Yi = ¢1(Xi,Uj,€ir)

Xi = 9o(Xit, .o, Xit—1, Ui mit)




@ What randomized experiment satisfies strict exogeneity?

{Ye(1), Ye(O)} .y 1L X4 |V,

{Ye(1), Ya(O)} Ly 1L X | Xityo o, Xip—1,U;

{Ye(1), Ya(O)} Ly 1L Xir | Xit,. .o, Xi7o1, U;

@ The “as-if random” assumption without conditioning on the
previous outcomes

@ Outcomes can directly affect future outcomes ~~ but no need to
adjust for past outcomes

@ Nonparametric identification result



@ Marginal structural models in epidemiology (Robins)
@ Risk set matching (Rosenbaum)

@ Trade-off: unobserved time-invariant confounders vs. direct effect
of outcome on future treatment

@\@ )

D
>
DAt e




@ Even if these assumptions are satisfied, the the unit fixed effects
estimator is inconsistent for the ATE:

T T
E!C: e XieYie 2o (1=Xi) Yir 2
P { I ( St Xi 11X !
* T

Bre — E(C,5?)

where S? = S, (X — X;)?/(T — 1) is the unit-specific variance

@ The Within-unit matching estimator improves Sgg by relaxing the
linearity assumption:

1 «Yi T (1=Xp)Y,:
7A'match — N Z C Zt_ it Zt__lj( lt) it
Zi:1 C’ i=1 Zt:1 it Zt:1(1 - )(It)




@ M;: matched set for observation (i, t)
@ For the within-unit matching estimator,

M(’a t) = {(ila t/) = i7)(i’l" =1 _)(I'f}

@ A general matching estimator just introduced:

7A'match = Dlt(Ylt _m)
Z: 121 1 It;;

where Dy = 1{#M(i,t) > 0} and
Yi(x) = .
) { FMD 2 memin Yo 1 X =1-x



@ “de-meaning” ~» match with all other observations within the same
unit:

M(i,t) = {(I"\V):"'=it #t}
@ mismatch: observations with the same treatment status
@ Unit fixed effects estimator adjusts for mismatches:

A 1
= DI i 1 - IO
Bre {Z/1Zt1 ZZ t( it(1) — Yir( ))}

If/1t1

where K is the proportion of proper matches

@ The within-unit matching estimator eliminates all mismatches



@ Any within-unit matching estimator can be written as a weighted
unit fixed effects estimator with different regression weights

@ The proposed within-matching estimator:

Awre = argmln Z Z D Wil (Yie — Y7) — B(Xi — X))}
i=1 t=1
where X; and Y, are unit-specific weighted averages, and

T .
if X't:17
Wi = { Zﬂf o

ST Xy T Xe=0



@ We show how to construct regression weights for different
matching estimators (i.e., different matched sets)

@ |dea: count the number of times each observation is used for
matching

@ Benefits:
e computational efficiency

e model-based standard errors

e double-robustness ~~ matching estimator is consistent even when
linear fixed effects regression is the true model

e specification test (White 1980) ~~ null hypothesis: linear fixed
effects regression is the true model
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@ The assumption that outcomes do not directly affect future
treatments may not be credible
@ Replace it with the design-based assumption:

E(Yi(x) | Xi =x) = E(Yj—1(X) | Xii—1 =1—-x')

o
i
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@ This is a matching estimator with the following matched set:
M(l,f) = {(i/,f,) = i, t' e {f* 1,t+4 1}7Xi’t/ =1 *)(it}

@ It is also the first differencing estimator:

-
Brp = argﬂminZZ{(Yn = Yie1) = B(Xit — Xir—1)}Y?

i=1 t=2

@ “We emphasize that the model and the interpretation of 5 are
exactly as in [the linear fixed effects model]. What differs is our
method for estimating 8” (Wooldridge; italics original).

@ The identification assumptions is very different!
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@ Adjusting for observed time-varying confounding Z;;

e Proposes within-unit matching estimators that adjust for Z;
o Key assumption: outcomes neither directly affect future treatments
nor future time-varying confounders

© Adjusting for past treatments
e Impossible to adjust for all past treatments within the same unit
e Researchers must decide the number of past treatments to adjust

© Adjusting for past outcomes
o No need to adjust for past outcomes if they do not directly affect
future treatments
o If they do, the strict exogeneity assumption will be violated
e Past outcomes as instrumental variables (Arellano and Bond)
~ often not credible

No free lunch: adjustment for unobservables comes with costs



@ Model:
Yi = aj+y+ BXi+eir

where ~; flexibly adjusts for a vector of unobserved unit-invariant
time effects Vi, i.e., vt = f(V¢)

@ Estimator:

Bre2 = argmanZ{(Y,t Yi—Yi+Y) = B(Xi — Xi — X + X)}?
i=1 t=1

where Y; and X; are time-specific means, and Y and X are
overall means



@ [rg: bias due to time effects
@ [Oretime: bias due to unit effects
@ [pool: bias due to both time and unit effects

WFE X BFe + WrEtime X BFEtime — Wpool X Bpool
WFE + WFEtime — Wpool

Bre2 =

with sufficiently large N and T, the weights are given by,

(

WFEtime (
wpool ~ S? = overall variance

WFE = average unit-specific variance

E
E

%

S7)
S?2) = average time-specific variance



@ Problem: No other unit shares the same unit and time

Units
, [l [l @ilT]
HER OGO,
£ [clc]T@®c
EIRE: T@T

@ Two kinds of mismatches ~ -—-----
@ Same treatment status
@ Neither same unit nor same time
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@ To cancel time and unit effects, we must induce mismatches

@ No weighted two-way fixed effects model eliminates mismatches
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@ Replace the model-based assumption with the design-based one
@ Parallel trend assumption:

E(Yit(0) — Yit—1(0) | Xit =1, Xi1—1 = 0)
= E(Yj(0) — Yit-1(0) | Xit = Xit—1 = 0)

=
i

© treatment group
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@ 2 x 2 ~~ standard two-way fixed effects estimator works
@ General setting: Multiple time periods, repeated treatments

@000
HOIOIONOXO

Time periods

MOIRGIONE
OO OO

—




@ Regression weights:

Time periods

Kosuke Imai (Princeton)
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@ Weights can be negative =—> the method of moments estimator
@ Fast computation is still available
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@ Controversy
o Rose (2004): No effect of GATT membership on trade

e Tomz et al. (2007): Significant effect with non-member participants

@ The central role of fixed effects models:
o Rose (2004): one-way (year) fixed effects for dyadic data

e Tomz et al. (2007): two-way (year and dyad) fixed effects

e Rose (2005): “| follow the profession in placing most confidence in
the fixed effects estimators; | have no clear ranking between
country-specific and country pair-specific effects.”

e Tomz et al. (2007): “We, too, prefer FE estimates over OLS on both
theoretical and statistical ground”



@ Data

e Data set from Tomz et al. (2007)
o Effect of GATT: 1948 — 1994
@ 162 countries, and 196,207 (dyad-year) observations

@ Year fixed effects model:
INYy = ar+ BXy + 6" Zjp + e

e Yj: trade volume
e Xi;: membership (formal/participants) Both vs. At most one
e Z;: 15 dyad-varying covariates (e.g., log product GDP)

© Weighted one-way fixed effects model:

N T

argmin Z Z Wir(In Yy — ar — BXig — 6" Zy)?
(B:0) j=1 t=1
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@ Abadie and Gardeazabal (2003, AER); Abadie et al. (2010, JASA)
@ Panel data: one treated unit, many controls
@ Requirement: a long time-series of control observations before
the treatment is administered at time j
T11 :0,...,7-1’_,'_1 :0,T1j: 1,T1’j+1 :1,...,T1J:1
@ Quantity of interest: Treatment effect for the treated
Yi(1) = Y1(0) = Yir — Y1:(0)
@ Estimator: ;
Yie(1) = Ya(0) = Yir— > WYy
i=2
where W; is estimated from the pre-treatment period such that
W = argmin||Y; — diag(w;) Yol|?
w

with Yy = (Y1,..., Yy 1) and Yo = (Yo1,..., Yo,-1)
@ Assumption: weights do not change over time
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can do this for all control units and compare them with the treated unit



@ Setup:

units: i =1,2,...,n

time periods: j=1,2,...,J

fixed J with n —

time-varying binary treatments: T; € {0, 1}

treatment history up to time j: Tj = {Ti, Tio, ..., Tji}
time-varying confounders: Xj;

confounder history up to time j: Xj = {Xi1, X2, ..., Xj}
outcome measured at time J: Y;

potential outcomes: Y;(%))

@ Assumptions:

Sequential ignorability
Yi(t)) L Ty | Tijor =14, X =

where t; = (ti_1,t,...,t))
Common support

0 < PI’(T,'/Z" |T,'J_1,)_(,'j) <1

e



@ Weighting each observation via the inverse probability of its
observed treatment sequence (Robins 1999)

@ Inverse-Probability-of-Treatment Weights:

o
' P(Tu| Xi) 25 P(Ty | Tijo1. X)

@ Stabilized weights:



@ Consistent estimation of the marginal mean of potential outcome:

T, = - .
- STy =1wY 2 E(Yi(1))
i=1
@ In practice, researchers fit a weighted regression of ¥; on a
function of T;; with regression weight w;
@ Adjusting for X, leads to post-treatment bias
@ MSMs estimate the average effect of any treatment sequence

@ Problem: MSMs are sensitive to the misspecification of treatment
assignment model (typically a series of logistic regressions)

@ The effect of misspecification can propagate across time periods
@ Solution: estimate MSM weights so that covariates are balanced
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@ time 1 covariates Xji: 3 equality constraints
E(Xi1) = E[1{Tih = t, Tio = 2} w; Xit]
@ time 2 covariates Xj»: 2 equality constraints
E(Xi2(t1)) = E[1{Tix = ts, Tz = t2}w; Xia(t1)]
fort, = 0,1
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Treatment history: (t, &)

Time period (0,0) (0,1) (1,0) (1,1) Moment condition
+ o+ - - E{(-1)""wXj1} =0
time 1 + — + - ]E{(—1)T"2WiXi1} -0
+ - - 4+ E{(-1)"*+Tew; X1} =0
ime 2 + -+ - E{(—Qszw, Xz} =0
+ — — + E{(—1)"*+Tew; X} =0




Tis = :

Te = CT,—o (1,10
Xi2(1)
- To o CTe=' Lv@a.01)
W =0 )(/3(1,0)\.Y(1 0,0)
X Tis=0 no
i1
| Te=1 . v0,1,1)
P A Xg(0,1) = A
7S T~ T.—o " (0,10
Xi2(0)
\ Ti3:1 )/,(0,0,1)

2=0 Xz(0,0) —

—_— .,V
7;,3 — o )/1(07070)

Generalization of the proposed method to J periods is in the paper




| Treatment History Hadamard Matrix: (t;, b, &) |
Design matrix1(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)1 Time
|

T T Tz | ho hy he ha  his hs hs  hizg '11 2 3
- - - F + + + + * + + xxx
e N M
-+ -+ + - -+ o+ - - W /X
e
- - + 4+ 4+ 4+ o+ - - - -y
T S T S A S
-+ + 1+ + - - - - + + W v/
e e T e T

@ The mod 2 discrete Fourier transform:
E{(-1)"*Tew;X;} =0 (6th row)

@ Connection to the fractional factorial design
e “Fractional” = past treatment history
e “Factorial” = future potential treatments



@ 3 time periods
@ Treatment assignment process:

@ Outcome: ¥; =250 — 1030, T+ >0 ;6 Xj +¢;
@ Functional form misspecification by nonlinear transformation of X




Bias

RMSE
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@ 3 time periods
@ Treatment assignment process:

@ The same outcome model
@ Incorrect lag: only adjusts for previous lag but not all lags
@ In addition, the same functional form misspecification of Xj

Uppsala (May 24 —25,2016)  89/96
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@ Electoral impact of negative advertisements (Blackwell, 2013)
@ For each of 114 races, 5 weeks leading up to the election

@ Outcome: candidates’ voteshare
@ Treatment: negative (T; = 1) or positive (Tj; = 0) campaign
@ Time-varying covariates: Democratic share of the polls, proportion

of voters undecided, campaign length, and the lagged and twice
lagged treatment variables for each week

@ Time-invariant covariates: baseline Democratic voteshare,
baseline proportion undecided, and indicators for election year,
incumbency status, and type of office

@ Original study: pooled logistic regression with a linear time trend
@ We compare period-by-period GLM with CBPS
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GLM CBPS CBPS GLM CBPS CBPS

(approx.) (approx.)

(Intercept) 55.69* 57.15* 57.94* 55.41* 57.06* 57.73*

(4.62) (1.84) (2.12) (3.09) (1.68) (1.88)
Negative 2.97 5.82 3.15
(time 1) (4.55) (5.30) (3.76)
Negative 3.53 2.71 5.02
(time 2) (9.71) (9.26) (8.55)
Negative —-2.77 -3.89 -3.63
(time 3) (12.57) (10.94) (11.46)
Negative —-8.28 —9.75 —10.39
(time 4) (10.29) (7.79) (8.79)
Negative —153 —1.95* —2.13*
(time 5) (0.97) (0.96) (0.98)

Negative —-1.14 —-1.35* —1.51*

(cumulative) (0.68) (0.39) (0.43)

R? 0.04 0.14 0.13 0.02 0.10 0.10

F statistics 0.95 3.39 3.32 2.84 12.29 12.23
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@ Matching methods do:

e make causal assumptions transparent by identifying counterfactuals
e make regression models robust by reducing model dependence

@ But they cannot solve endogeneity
@ Only good research design can overcome endogeneity

@ Recent advances in matching methods

o directly optimize balance
o the same idea applied to propensity score

@ Weighting methods generalize matching methods

e Sensitive to propensity score model specification
o Robust estimation of propensity score model

@ Other methodological challenges for causal inference:
temporal and spatial dynamics, networks effects



@ “Matching as Nonparametric Preprocessing for Reducing Model
Dependence in Parametric Causal Inference.” Political Analysis

@ “Misunderstandings among Experimentalists and
Observationalists about Causal Inference.” Journal of the Royal
Statistical Society, Series A

@ “The Essential Role of Pair Matching in Cluster-Randomized
Experiments, with Application to the Mexican Universal Health
Insurance Evaluation.” Statistical Science

@ “Covariate Balancing Propensity Score.” Journal of the Royal
Statistical Society, Series B

@ “Robust Estimation of Inverse Probability Weights for Marginal
Structural Models.” Journal of the American Statistical Association

@ “When Should We Use Linear Fixed Effects Regression Models
for Causal Inference with Panel Data?” Working paper

All papers are available at
http://imai.princeton.edu/research
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@ Causal inference with regression: Zelig: Everyone’s Statistical
Software

@ Causal inference with matching: Matchlt: Nonparametric
Preprocessing for Parametric Causal Inference

@ Causal inference with propensity score: CBPS: Covariate
Balancing Propensity Score

@ Causal inference with fixed effects: wfe: Weighted Fixed Effects
Regressions for Causal Inference

All software is available at
http://imai.princeton.edu/software


http://imai.princeton.edu/software
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