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Experiments, Statistics, and Causal Mechanisms

Causal inference is a central goal of social science
Experiments as gold standard for estimating causal effects
But, we really care about causal mechanisms

A major criticism of experimentation (and statistics):
it can only determine whether the treatment causes
changes in the outcome, but not how and why

Experiments are a black box
Qualitative research uses process tracing

Key Challenge: How can we design and analyze experiments to
identify causal mechanisms?
We propose new statistical methods and experimental designs for
the identification of causal mechanisms
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Overview of the Talk

Identification of causal mechanisms in standard experiments

1 Offer a general nonparametric identification and estimation strategy

2 Modernize and extend causal mediation analysis

3 Propose sensitivity analyses to assess the robustness

New experimental designs for identification of causal mechanisms

1 Derive the limitations of common approaches

2 Propose alternative experimental designs

3 Illustrate the ideas vis-à-vis a behavioral neuroscience experiment
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Causal Mediation Analysis

Graphical representation
Mediator, M

Treatment, T Outcome, Y

Quantities of interest: Direct and indirect effects
Fast growing methodological literature
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Common Practice in the Discipline

Regression
Yi = α + βTi + γMi + δXi + εi

Each coefficient is interpreted as a causal effect
Sometimes, it’s called marginal effect
Idea: increase Ti by one unit while holding Mi and Xi constant

Post-treatment bias: if you change Ti , that may also change Mi

Usual advice: only include causally prior variables
But, then you lose causal mechanisms!
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Formal Statistical Framework of Causal Inference

Binary treatment: Ti ∈ {0,1}
Mediator: Mi ∈M
Outcome: Yi ∈ Y
Observed covariates: Xi ∈ X

Potential mediators: Mi(t) where Mi = Mi(Ti)

Potential outcomes: Yi(t ,m) where Yi = Yi(Ti ,Mi(Ti))

Fundamental problem of causal inference:
Only one potential outcome is observed
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Defining and Interpreting Causal Mediation Effects

Total causal effect:

τi ≡ Yi(1,Mi(1))− Yi(0,Mi(0))

Indirect (causal mediation) effects:

δi(t) ≡ Yi(t ,Mi(1))− Yi(t ,Mi(0))

Causal effect of the change in Mi on Yi that would be induced by
treatment
Change the mediator from Mi(0) to Mi(1) while holding the
treatment constant at t
Fundamental problem: For each unit i , Yi(t ,Mi(t)) is observable
but one can never observe Yi(t ,Mi(1− t))
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Mechanisms, Manipulations, and Interactions

Mechanisms
Indirect effects:

δi(t) ≡ Yi(t ,Mi(1))− Yi(t ,Mi(0))

Counterfactuals about naturally occurring values

Manipulations
Controlled direct effects:

ξi(t ,m,m′) ≡ Yi(t ,m)− Yi(t ,m′)

Causal effect of directly manipulating the mediator under Ti = t

Interactions
Interaction effects:

ξ(1,m,m′)− ξ(0,m,m′) 6= 0

Doesn’t imply the existence of a mechanism
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Nonparametric Identification

Quantity of Interest: Average Causal Mediation Effects

δ̄(t) ≡ E(δi(t)) = E{Yi(t ,Mi(1))− Yi(t ,Mi(0))}
Problem: Yi(t ,Mi(t)) is observed but Yi(t ,Mi(1− t)) can never be
observed

Proposed identification assumption: Sequential Ignorability

{Yi(t ′,m),Mi(t)} ⊥⊥ Ti | Xi = x ,

Yi(t ′,m) ⊥⊥ Mi | Ti = t ,Xi = x

Theorem 1 (Nonparametric Identification)
Under sequential ignorability,

δ̄(t) =
R R

E(Yi | Mi ,Ti = t ,Xi ) {dP(Mi | Ti = 1,Xi )− dP(Mi | Ti = 0,Xi )} dP(Xi ),

ζ̄(t) =
R R
{E(Yi | Mi ,Ti = 1,Xi )− E(Yi | Mi ,Ti = 0,Xi )} dP(Mi | Ti = t ,Xi ) dP(Xi ).
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Inference Under Sequential Ignorability

Model outcome and mediator
Outcome model: p(Yi | Ti ,Mi ,Xi)

Mediator model: p(Mi | Ti ,Xi)

A simplest setup: Linear Structural Equation Model (LSEM)

Mi = α2 + β2Ti + εi2,

Yi = α3 + β3Ti + γMi + εi3.

Theorem 2 (Identification Under LSEM)
Under the LSEM and sequential ignorability, the average causal
mediation effects are identified as δ̄(0) = δ̄(1) = β2γ.

Can include the interaction between Ti and Mi

Can use parametric or nonparametric regressions; probit, logit,
ordered mediator, GAM, quantile regression, etc.
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Need for Sensitivity Analysis

The sequential ignorability assumption is often too strong

Need to assess the robustness of findings via sensitivity analysis
Question: How large a departure from the key assumption must
occur for the conclusions to no longer hold?

Parametric sensitivity analysis by assuming

{Yi(t ′,m),Mi(t)} ⊥⊥ Ti | Xi = x

but not
Yi(t ′,m) ⊥⊥ Mi | Ti = t ,Xi = x

Possible existence of unobserved pre-treatment confounder
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Parametric Sensitivity Analysis

Sensitivity parameter: ρ ≡ Corr(εi2, εi3)

Sequential ignorability implies ρ = 0
Set ρ to different values and see how mediation effects change

Theorem 3

δ̄(0) = δ̄(1) =
β2σ1

σ2

{
ρ̃− ρ

√
(1− ρ̃2)/(1− ρ2)

}
,

where σ2
j ≡ var(εij) for j = 1,2 and ρ̃ ≡ Corr(εi1, εi2).

When do my results go away completely?
δ̄(t) = 0 if and only if ρ = ρ̃

Easy to estimate from the regression of Yi on Ti :

Yi = α1 + β1Ti + εi1
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Interpreting Sensitivity Analysis with R squares

Interpreting ρ: how small is too small?

An unobserved (pre-treatment) confounder formulation:

εi2 = λ2Ui + ε′i2 and εi3 = λ3Ui + ε′i3

How much does Ui have to explain for our results to go away?

Sensitivity parameters: R squares
1 Proportion of previously unexplained variance explained by Ui

R2∗
M ≡ 1−

var(ε′i2)

var(εi2)
and R2∗

Y ≡ 1−
var(ε′i3)

var(εi3)

2 Proportion of original variance explained by Ui

R̃2
M ≡

var(εi2)− var(ε′i2)

var(Mi )
and R̃2

Y ≡
var(εi3)− var(ε′i3)

var(Yi )
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Then reparameterize ρ using (R2∗
M ,R2∗

Y ) (or (R̃2
M , R̃

2
Y )):

ρ = sgn(λ2λ3)R∗MR∗Y =
sgn(λ2λ3)R̃MR̃Y√
(1− R2

M)(1− R2
Y )
,

where R2
M and R2

Y are from the original mediator and outcome
models

sgn(λ2λ3) indicates the direction of the effects of Ui on Yi and Mi

Set (R2∗
M ,R2∗

Y ) (or (R̃2
M , R̃

2
Y )) to different values and see how

mediation effects change
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Empirical Illustration: Nelson et al. (APSR)

How does media framing affect citizens’ political opinions?
News stories about the Ku Klux Klan rally in Ohio

Treatment: Free speech frame (Ti = 0) and public order frame
(Ti = 1)
Randomized experiment with sample size = 136

Mediators: general attitudes about the importance of free speech
and public order
Outcome: tolerance for the Klan rally
Expected findings: negative mediation effects
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Analysis under Sequential Ignorability

Average Mediation Effects δ̂(0) = δ̂(1) −0.44
[−0.87,−0.01]

Average Direct Effects ζ̂(0) = ζ̂(1) −0.02
[−0.49, 0.47]

Average Total Effect τ̂ −0.46
[−1.11, 0.23]
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Sensitivity Analysis with Respect to ρ
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Sensitivity Analysis with Respect to (R̃2
M , R̃

2
Y )
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Experimental Designs and Causal Mechanisms

Statistical vs. Experimental approach to the identification of
causal mechanisms
Can we design an experiment to facilitate the identification of
causal mechanisms?
Replace statistical assumptions with the assumptions about
experimental design
How do different experimental designs help or hinder the
identification of causal mechanisms?

Encourages experimentalists to be creative
Technological developments facilitates the use of new designs
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Single Experiment Approach

 

Key Identifying Assumptions

Sequential Ignorability: conditional on
treatment, mediator is random

Violated if there are unobservables that affect
mediator and outcome

Not testable – sensitivity analysis at best

Identification Analysis

Can never identify the sign of indirect effect
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Causal Chain Approach

 

Key Identifying Assumptions

Treatment in second experiment is random

No Manipulation Effect: Manipulation of
mediator has no direct effect on outcome

No Interaction: Changing the mediator
under the treatment produces same effect
as changing mediator under the control

Identification Analysis

More informative than single experiment
In most cases, cannot identify the sign
Statistical significant effects are neither
necessary or sufficient
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Comparison of Assumptions

Single Causal
Assumptions Experiment Chain
Random Treatment © §
Sequential Ignorability (SI) §
Random Mediator ©
No Manipulation Effect §
No Interaction Effect §

Limitations of the existing approaches:
Single experiment approach requires the SI assumption
Causal chain approach replaces it with other untestable
assumptions that are unrelated to experimental designs

Can we come up with a better experimental design?
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Parallel Design

 
 
 
 

Key Identifying Assumptions
No Manipulation Effect
No Interaction Effect

Identification Analysis
Always more informative than causal chain
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Comparison of Assumptions

Causal
Assumptions Chain Parallel
Random Treatment § ©
Sequential Ignorability
Random Mediator © ©
No Manipulation Effect § §
No Interaction Effect § §

Difficult to justify the No Interaction Effect assumption
Parallel design is more informative about causal mechanisms
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Crossover Design

 
 

Key Identifying Assumptions

No Carryover Effect: First experiment
doesn’t affect second experiment

No Manipulation Effect

Identification Analysis

No information about carryover effect
Use different crossover experiments
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Crossover Encouragement Design

 

Key Identifying Assumptions

No Defier: Encouragement doesn’t
discourage anyone

No Carryover Effect

No Manipulation Effect

Identification Analysis

Identify indirect effects for “pliable” units
Can check carryover effect
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Comparison of Assumptions

Crossover
Assumptions Crossover Encouragement
Random Treatment © ©
Sequential Ignorability
Random Mediator
Random Encouragement ©
No Manipulation Effect § §
No Interaction Effect
No Carryover Effect § §
No Defier §

Crossover design is the most powerful, but requires the no
carryover effect assumption
Longer washout period
Crossover encouragement design can be applied even if mediator
is not directly manipulable
Subtle encouragement – less manipulation effect
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Example from Behavioral Neuroscience

Question: What mechanism links low offers in an ultimatum game with
“irrational" rejections?

Two brain regions more active when unfair offer received (single
experiment design)

Design solution: manipulate mechanisms with TMS
Knoch et al. use TMS to manipulate — turn off — one of these
regions, and then observes choices (parallel design)

We discuss the applicability of each design and the credibility of its
identification assumptions in this context
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Concluding Remarks

Identification of causal mechanisms is difficult but is possible
Additional assumptions are required

Two proposed strategies:
1 Sensitivity analysis to assess the robustness
2 New experimental designs to improve the credibility

Offer a comprehensive set of statistical methods
Derive the identification power of different experimental designs

Ongoing work:
Application to political psychology experiments
Experimental identification of causal effects of gene
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Papers and Software

“Experimental Identification of Causal Mechanisms”
“Identification, Inference, and Sensitivity Analysis for Causal
Mediation Effects.”
“A General Approach to Causal Mediation Analysis.”
“Causal Mediation Analysis in R.”
All available at
http://imai.princeton.edu/projects/mechanisms.html

mediation: R package for causal mediation analysis
Available at
http://cran.r-project.org/web/packages/mediation/
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http://imai.princeton.edu/projects/mechanisms.html
http://cran.r-project.org/web/packages/mediation/

	Introduction
	Overview
	Framework

	Statistical Methods for Identification of Causal Mechanisms
	Identification
	Estimation
	Sensitivity Analysis
	Example

	Experimental Designs for Identification of Causal Mechanisms
	Existing Approaches
	New Experimental Designs
	Example

	Conclusion

