Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Naoki Egami

Kosuke Imai

Princeton University

Talk at the Institute for Mathematics and Its Applications
University of Minnesota
September 15, 2017

Causal Heterogeneity and Interaction Effects

- Moderation:
 - How does the effect of a treatment vary across individuals?
 - Interaction between the treatment variable and pre-treatment covariates

- Causal interaction:
 - What combination of treatments is efficacious?
 - Interaction among multiple treatment variables

Conjoint Analysis

- Survey experiments with a factorial design
- Respondents evaluate several pairs of randomly selected profiles defined by multiple factors
- Social scientists use it to analyze multidimensional preferences
- Example: Immigration preference (Hopkins and Hainmueller 2014)
 - representative sample of 1,407 American adults
 - each respondent evaluates 5 pairs of immigrant profiles
 - gender², education⁷, origin¹⁰, experience⁴, plan⁴, language⁴, profession¹¹, application reason³, prior trips⁵
 - What combinations of immigrant characteristics do Americans prefer?
 - High dimension: over 1 million treatment combinations
- Methodological challenges:
 - Many interaction effects → false positives, difficulty of interpretation
 - Very few applied researchers study interaction

Factorial Experiments with Two Treatments

• Two factorial treatments (e.g., gender and race):

$$A \in \mathcal{A} = \{a_0, a_1, \dots, a_{L_A-1}\}\$$

 $B \in \mathcal{B} = \{b_0, b_1, \dots, b_{L_B-1}\}\$

- Assumption: Full factorial design
 - Randomization of treatment assignment

$$\{Y(a_{\ell},b_m)\}_{a_{\ell}\in\mathcal{A},b_m\in\mathcal{B}}$$
 \perp $\{A,B\}$

Non-zero probability for all treatment combination

$$\Pr(A = a_{\ell}, B = b_m) > 0 \text{ for all } a_{\ell} \in \mathcal{A} \text{ and } b_m \in \mathcal{B}$$

Main Causal Estimands in Factorial Experiments

- Average Combination Effect (ACE):
 - Average effect of treatment combination $(A, B) = (a_{\ell}, b_m)$ relative to the baseline condition $(A, B) = (a_0, b_0)$

$$\tau_{AB}(a_{\ell}, b_{m}; a_{0}, b_{0}) = \mathbb{E}\{Y(a_{\ell}, b_{m}) - Y(a_{0}, b_{0})\}$$

- Effect of being Asian male
- Average Marginal Effect (AME; Hainmueller et al. 2014; Dasgupta et al. 2015):
 - Average effect of treatment $A = a_{\ell}$ relative to the baseline condition $A = a_0$ averaging over the other treatment B

$$\psi_A(a_\ell,a_0) = \int \mathbb{E}\{Y(a_\ell,B)-Y(a_0,B)\}dF(B)$$

Effect of being male averaging over race

The New Causal Interaction Effect

Average Marginal Interaction Effect (AMIE):

$$\pi_{AB}(a_{\ell},b_m;a_0,b_0) = \underbrace{\tau_{AB}(a_{\ell},b_m;a_0,b_0)}_{\text{ACE of }(a_{\ell},b_m)} - \underbrace{\psi_{A}(a_{\ell},a_0)}_{\text{AME of }a_{\ell}} - \underbrace{\psi_{B}(b_m,b_0)}_{\text{AME of }b_m}$$

- Interpretation: additional effect induced by $A=a_\ell$ and $B=b_m$ together beyond the separate effect of $A=a_\ell$ and that of $B=b_m$
- Additional effect of being Asian male beyond the sum of separate effects for being male and being Asian
- Decomposition of ACE: $\tau_{AB} = \psi_A + \psi_B + \pi_{AB}$
- Invariance: Unlike the standard interaction effect, the relative magnitude of AMIE doesn't depend on the choice of baseline condition
- AMIEs depend on the distribution of treatment assignment:
 - specified by one's experimental design
 - 2 motivated by a target population

Higher-order Causal Interaction

- *J* factorial treatments with L_j levels each: $\mathbf{T} = (T_1, \dots, T_J)$
- Assumptions:
 - Full factorial design

$$Y(\mathbf{t})$$
 $\perp \!\!\! \perp$ \mathbf{T} and $Pr(\mathbf{T} = \mathbf{t}) > 0$ for all \mathbf{t}

Independent treatment assignment

$$T_j \perp \perp \mathbf{T}_{-j}$$
 for all j

- Assumption 2 is not necessary for identification but considerably simplifies estimation
- ullet We are interested in the K-way interaction where $K \leq J$
- We extend all the results for the 2-way interaction to this general case

Higher-order Average Marginal Interaction Effect

- General definition: the difference between ACE and the sum of all lower-order AMIEs (first-order AMIE = AME)
- Example: 3-way AMIE, $\pi_{1:3}(t_1, t_2, t_3; t_{01}, t_{02}, t_{03})$, equals

$$\underbrace{\tau_{1:3}(t_1,t_2,t_3;t_{01},t_{02},t_{03})}_{\text{ACE}} \\ -\underbrace{\left\{\pi_{1:2}(t_1,t_2;t_{01},t_{02})+\pi_{2:3}(t_2,t_3;t_{02},t_{03})+\pi_{1:3}(t_1,t_3;t_{01},t_{03})\right\}}_{\text{sum of all 2-way AMIEs}} \\ -\underbrace{\left\{\psi(t_1;t_{01})+\psi(t_2;t_{02})+\psi(t_3;t_{03})\right\}}_{\text{sum of AMEs}}$$

- Properties:
 - K-way ACE = the sum of all K-way and lower-order AMIEs
 - Invariance to the baseline condition

Nonparametric Estimation of AMIE

- Difference-in-means estimator
 - estimate ACE and AMEs using the difference-in-means estimators
 - estimate AMIE as $\hat{\pi}_{AB} = \hat{\tau}_{AB} \hat{\psi}_{A} \hat{\psi}_{B}$
 - higher-order AMIEs can be estimated sequentially
 - uses the empirical treatment assignment distribution
- ANOVA based estimator
 - saturated ANOVA include all interactions up to the Jth order
 - weighted zero-sum constraints: for all factors and levels,

$$\begin{split} &\sum_{\ell=0}^{L_A-1} \Pr(A_i = a_\ell) \beta_\ell^A \ = \ 0, \quad \sum_{\ell=0}^{L_A-1} \Pr(A_i = a_\ell) \beta_{\ell m}^{AB} \ = \ 0, \\ &\sum_{m=0}^{L_B-1} \Pr(B_i = b_m) \beta_m^B \ = \ 0, \quad \sum_{m=0}^{L_B-1} \Pr(B_i = b_m) \beta_{\ell m}^{AB} \ = \ 0, \quad \text{and so on} \end{split}$$

• AMIEs are differences of coefficients:

$$\mathbb{E}(\hat{\beta}_{\ell}^{A} - \hat{\beta}_{0}^{A}) = \psi_{A}(a_{\ell}; a_{0}), \quad \mathbb{E}(\hat{\beta}_{\ell m}^{AB} - \hat{\beta}_{00}^{AB}) = \pi_{AB}(a_{\ell}, b_{m}; a_{0}, b_{0})$$

• can use any marginal treatment assignment distribution of choice

Conjoint Analysis of Ethnic Voting in Africa

- Ethnic voting and accountability: Carlson (2015, World Politics)
- Do voters prefer candidates of same ethnicity regardless of their prior performance? Do ethnicity and performance interact?
- Conjoint analysis in Uganda: 547 voters from 32 villages
- Each voter evaluates 3 pairs of hypothetical candidates
- 5 factors: Coethnicity², Prior record², Prior office⁴, Platform³, Education⁸
- Collapse Education into 2 levels: relevant degrees (MA in business, law, economics, development) and other degrees

A Statistical Model of Preference Differentials

ANOVA regression with one-way and two-way effects:

$$Y_{i}(\mathbf{T}_{i}) = \mu + \sum_{j=1}^{J} \sum_{\ell=0}^{L_{j}-1} \beta_{\ell}^{j} \mathbf{1} \{ T_{ij} = \ell \} + \sum_{j \neq j'} \sum_{\ell=0}^{L_{j}-1} \sum_{m=0}^{L_{j'}-1} \beta_{\ell m}^{jj'} \mathbf{1} \{ T_{ij} = \ell, T_{ij'} = m \} + \epsilon_{i}$$

with appropriate weighted zero-sum constraints

- In conjoint analysis, we observe the sign of preference differentials
- Linear probability model of preference differential:

$$\begin{split} & \mathsf{Pr}(Y_{i}(\mathsf{T}_{i}^{*}) > Y_{i}(\mathsf{T}_{i}^{*}) \mid \mathsf{T}_{i}^{*}, \mathsf{T}_{i}^{*}) \\ = & \mu^{*} + \sum_{j=1}^{J} \sum_{\ell=0}^{L_{j}-1} \beta_{\ell}^{j} (\mathbf{1} \{ T_{ij}^{*} = \ell \} - \mathbf{1} \{ T_{ij}^{*} = \ell \}) \\ & + \sum_{i \neq i'} \sum_{\ell=0}^{L_{j}-1} \sum_{m=0}^{L_{j'}-1} \beta_{\ell m}^{ji'} (\mathbf{1} \{ T_{ij}^{*} = \ell, T_{ij'}^{*} = m \} - \mathbf{1} \{ T_{ij}^{*} = \ell, T_{ij'}^{*} = m \}) \end{split}$$

where $\mu^*=0.5$ if the position of profile does not matter

• We apply regularized ANOVA method (Post and Bondell)

Ranges of Estimated AMEs and AMIEs

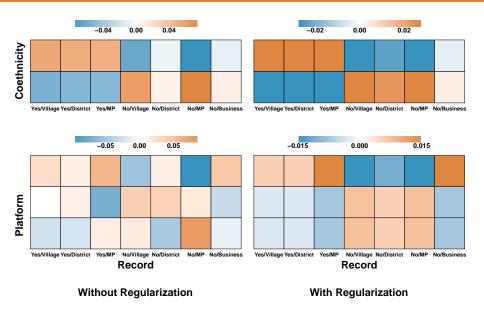
	Range	Selection prob.
AME		
Record	0.122	1.00
Coethnicity	0.053	1.00
Platform	0.023	0.93
Degree	0.000	0.33
AMIE		
${\tt Coethnicity} imes {\tt Record}$	0.053	1.00
$\mathtt{Record} \times \mathtt{Platform}$	0.030	0.92
${\tt Platform} \times {\tt Coethnic}$	0.008	0.64
Coethnicity \times Degree	0.000	0.62
${ t Platform} imes { t Degree}$	0.000	0.35
Record \times Degree	0.000	0.09

• Factor selection probability based on bootstrap

Close Look at the Estimated AMEs

Factor	AME	Selection prob.
Record		
(Yes/Village	0.122	\ 0.71
Yes/District	0.122	 ⟩ 0.71 ⟩ 0.77 ⟩ 1.00 ⟩ 0.74 ⟩ 0.74 ⟩ 1.00
Yes/MP	0.101	
No/Village	0.047	
No/District	0.051	
No/MP	0.047	
No/Businessman	base	
Platform		
∫ Jobs	-0.023	\ 0.56
Clinic	-0.023	0.56
$\hat{\ }$ Education	base	⟩ 0.94
Coethnicity	0.054	1.00
Degree	0.000	0.33

Effect of Regularization on AMIEs



Decomposition and Conditional Effects

Decomposition of ACE (Coethnicity × Record interaction):

$$\frac{\tau(\text{Coethnic, No/Business; Non-coethnic, No/MP})}{-2.4} = \underbrace{\psi(\text{Coethnic; Non-coethnic})}_{5.4} + \underbrace{\psi(\text{No/Business; No/MP})}_{-4.7} \\ + \underbrace{\pi(\text{Coethnic, No/Business; Non-coethnic, No/MP})}_{-3.1}$$

- Conditional effects (Platform × Record interaction):
 - AMIE: $\pi(\text{Education, No/MP})$; {Job, No/MP}) = -2.3
 - Conditional effect of Education relative to Job for No/MP is approximately zero
 - AME: $\psi(\text{Education}; \text{Job}) = 2.3$

Concluding Remarks

- Interaction effects play an essential role in causal heterogeneity
 - moderation
 - causal interaction
- Randomized experiments with a factorial design
 - useful for testing multiple treatments and their interactions
 - 2 social science applications: audit studies, conjoint analysis
 - 3 challenge: estimation and interpretation in high dimension
- Average Marginal Interaction Effect (AMIE)
 - invariant to baseline condition
 - 2 straightforward interpretation even for high order interaction
 - enables effect decomposition
 - enables regularization through ANOVA