Statistical Analysis of the Item Count Technique

Kosuke Imai

Department of Politics Princeton University

Joint work with Graeme Blair

May 4, 2011

Motivation

- Validity of much empirical social science research relies upon accuracy of self-reported behavior and beliefs
- Challenge: eliciting truthful answers to sensitive survey questions e.g., racial prejudice, corruptions, fraud, support for militant groups
- Social desirability bias, privacy and safety concerns
- Lies and non-responses
- Solution: Use indirect rather than direct questioning
 - Randomization: Randomized response technique
 - Aggregation: Item count technique (list experiment)

Item Count Technique: An Example

- The 1991 National Race and Politics Survey (Sniderman et al.)
- Randomize the sample into the treatment and control groups
- The script for the control group

Now I'm going to read you three things that sometimes make people angry or upset. After I read all three, just tell me HOW MANY of them upset you. (I don't want to know which ones, just how many.)

- (1) the federal government increasing the tax on gasoline;
- (2) professional athletes getting million-dollar-plus salaries;
- (3) large corporations polluting the environment.

Item Count Technique: An Example

- The 1991 National Race and Politics Survey (Sniderman et al.)
- Randomize the sample into the treatment and control groups
- The script for the treatment group

```
Now I'm going to read you four things that sometimes make people angry or upset. After I read all four, just tell me HOW MANY of them upset you. (I don't want to know which ones, just how many.)
```

- (1) the federal government increasing the tax on gasoline;
- (2) professional athletes getting million-dollar-plus salaries;
- (3) large corporations polluting the environment;
- (4) a black family moving next door to you.

Methodological Challenges

Item count technique is becoming popular:

```
Kuklinski et al., 1997a,b; Sniderman and Carmines, 1997; Gilens et al., 1998; Kane et al., 2004; Tsuchiya et al., 2007; Streb et al., 2008; Corstange, 2009; Flavin and Keane, 2010; Glynn, 2010; Gonzalez-Ocantos et al., 2010; Holbrook and Krosnick, 2010; Janus, 2010; Redlawsk et al., 2010; Coutts and Jann, 2011
```

- Standard practice: Use difference-in-means to estimate the proportion of those who answer yes to sensitive item
- Getting more out of item count technique:
 - Who are more likely to answer yes?
 - Who are answering differently to direct and indirect questioning?
 - Oan we detect failures of item count technique?
 - Can we correct violations of key assumptions?
- Recoup the efficiency loss due to indirect questioning

Overview of the Project

Goals:

- Develop multivariate regression analysis methodology
- 2 Develop statistical tests to detect failures of item count technique
- 3 Develop methods to correct deviations from key assumption
- Develop open-source software to implement the methods
- Applications in Afghanistan (joint work with J. Lyall)

References:

- Imai, K. (in-press) "Multivariate Regression Analysis for the Item Count Technique." Journal of the American Statistical Association
- Blair, G. and K. Imai. "Statistical Analysis of List Experiments."
- 3 Blair, G. and K. Imai. list: Statistical Methods for the Item Count Technique and List Experiment available at http://cran.r-project.org/package=list

Notation and Setup

- J: number of control items
- N: number of respondents
- T_i : binary treatment indicator (1 = treatment, 0 = control)
- X_i: pre-treatment covariates
- Latent potential responses to each item
 - \bullet $Z_{ij}(0)$: potential response to the *j*th item under control
 - 2 $Z_{ij}(1)$: potential response to the *j*th item under treatment
- Z_{ij}^* : truthful latent response to the *j*th item
- Potential responses to list question
 - $Y_i(0) = \sum_{j=1}^{J} Z_{ij}(0)$: potential response under control
 - 2 $Y_i(1) = \sum_{i=1}^{J+1} Z_{ii}(1)$: potential response under treatment
- $Y_i = Y_i(T_i)$: observed response

Identification Assumptions

- Randomization of the Treatment
- No Design Effect: The inclusion of the sensitive item does not affect answers to control items

$$\sum_{j=1}^{J} Z_{ij}(0) = \sum_{j=1}^{J} Z_{ij}(1)$$

No Liars: Answers about the sensitive item are truthful

$$Z_{i,J+1}(1) = Z_{i,J+1}^*$$

Under these assumptions, the diff-in-means estimator is unbiased

New Multivariate Regression Estimators

- Generalize the difference-in-means estimator
- The Linear least squares model:

$$Y_i = \underbrace{X_i^{\top} \gamma}_{control} + \underbrace{T_i \cdot X_i^{\top} \delta}_{sensitive} + \epsilon_i$$

- Further, generalize the estimator
- The nonlinear least squares model:

$$Y_i = f(X_i, \gamma) + T_i \cdot g(X_i, \delta) + \epsilon_i$$

- Logit models: $f(x, \gamma) = J \cdot \operatorname{logit}^{-1}(x^{\top} \gamma)$ and $g(x, \delta) = \operatorname{logit}^{-1}(x^{\top} \delta)$
- Two-step estimation with standard error via method of moments

Extracting More Information from the Data

- Define a "type" of each respondent by $(Y_i(0), Z_{i,J+1}^*)$
 - $Y_i(0)$: total number of yes for control items $\in \{0, 1, ..., J\}$
 - $Z_{i,l+1}^*$: truthful answer to the sensitive item $\in \{0,1\}$
- A total of $(2 \times (J+1))$ types
- Example: three control items (J = 3)

Y_i	Treatment group	Control group		
4	(3,1)			
3	(2,1) (3,0)	(3,1) (3,0)		
2	(1,1) (2,0)	(2,1) (2,0)		
1	(0,1) (1,0)	(1,1) (1,0)		
0	(0,0)	(0,1) (0,0)		

Joint distribution is identified

Extracting More Information from the Data

- Define a "type" of each respondent by $(Y_i(0), Z_{i,J+1}^*)$
 - $Y_i(0)$: total number of yes for control items $\{0, 1, \dots, J\}$
 - $Z_{i,j+1}^*$: truthful answer to the sensitive item $\{0,1\}$
- A total of $(2 \times (J+1))$ types
- Example: three non-sensitive items (J = 3)

Y_i	Treatment group	Control group		
4	(3,1)			
3	(2,1) (3,0)	(3,1) (3,0)		
2	(1,1) (2,0)	(2,1) (2,0)		
1	(0,1) $(1,0)$	(1,1) $(1,0)$		
0	(0,0)	(0,1) (0,0)		

Joint distribution is identified:

$$Pr(type = (y, 1)) = Pr(Y_i \le y \mid T_i = 0) - Pr(Y_i \le y \mid T_i = 1)$$

Extracting More Information from the Data

- Define a "type" of each respondent by $(Y_i(0), Z_{i,J+1}^*)$
 - $Y_i(0)$: total number of yes for control items $\{0, 1, \dots, J\}$
 - $Z_{i,J+1}^*$: truthful answer to the sensitive item $\{0,1\}$
- A total of $(2 \times (J+1))$ types
- Example: two control items (J = 3)

Y_i	Treatment group	Control group		
4	(3,1)			
3	(2,1) (3,0)	(3,1) (3,0)		
2	(1,1) (2,0)	(2,1) (2,0)		
1	(0,1) $(1,0)$	(1,1) (1,0)		
0	(0,0)	(0,1) (0,0)		

• Joint distribution is identified:

$$Pr(type = (y, 1)) = Pr(Y_i \le y \mid T_i = 0) - Pr(Y_i \le y \mid T_i = 1)$$

 $Pr(type = (y, 0)) = Pr(Y_i \le y \mid T_i = 1) - Pr(Y_i < y \mid T_i = 0)$

The Maximum Likelihood Estimator

Model for sensitive item as before: e.g., logistic regression

$$\Pr(Z_{i,J+1}^* = 1 \mid X_i = x) = \log_i t^{-1}(x^{\top} \delta)$$

 Model for control items given the response to sensitive item: e.g., binomial or beta-binomial logistic regression

$$\Pr(Y_i(0) = y \mid X_i = x, Z_{i,J+1}^* = z) = J \times \text{logit}^{-1}(x^{\top}\psi_z)$$

The Likelihood Function

- $\bullet \ g(x,\delta) = \Pr(Z_{i,J+1}^* = 1 \mid X_i = x)$
- $h_z(y; x, \psi_z) = \Pr(Y_i(0) = y \mid X_i = x, Z_{i,J+1}^* = z)$:
- The likelihood function:

$$\prod_{i \in \mathcal{J}(1,0)} (1 - g(X_i, \delta)) h_0(0; X_i, \psi_0) \prod_{i \in \mathcal{J}(1,J+1)} g(X_i, \delta) h_1(J; X_i, \psi_1) \\
\times \prod_{y=1}^{J} \prod_{i \in \mathcal{J}(1,y)} \{g(X_i, \delta) h_1(y - 1; X_i, \psi_1) + (1 - g(X_i, \delta)) h_0(y; X_i, \psi_0)\}$$

$$\times \prod_{y=0}^{\sigma} \prod_{i \in \mathcal{J}(0,y)} \{g(X_i,\delta)h_1(y;X_i,\psi_1) + (1-g(X_i,\delta))h_0(y;X_i,\psi_0)\}$$

where $\mathcal{J}(t, y)$ represents a set of respondents with $(T_i, Y_i) = (t, y)$

Maximizing this function is difficult

Missing Data Framework and the EM Algorithm

- Consider $Z_{i,J+1}^*$ as missing data
- For some respondents, $Z_{i,J+1}^*$ is "observed"
- The complete-data likelihood has a much simpler form:

$$\prod_{i=1}^{N} \left\{ g(X_{i}, \delta) h_{1}(Y_{i} - 1; X_{i}, \psi_{1})^{T_{i}} h_{1}(Y_{i}; X_{i}, \psi_{1})^{1 - T_{i}} \right\}^{Z_{i,J+1}^{*}} \times \left\{ (1 - g(X_{i}, \delta)) h_{0}(Y_{i}; X_{i}, \psi_{0}) \right\}^{1 - Z_{i,J+1}^{*}}$$

- The EM algorithm: only separate optimization of $g(x, \delta)$ and $h_z(y; x, \psi_z)$ is required
 - · weighted logistic regression
 - · weighted binomial logistic regression
- Both can be implemented in standard statistical software

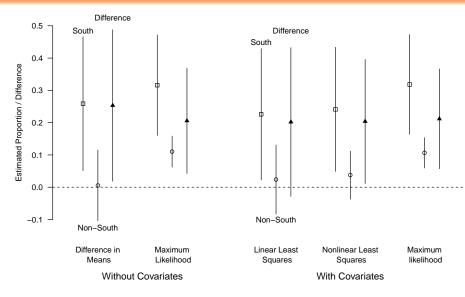
Empirical Application: Racial Prejudice in the US

- Kuklinski et al. (1997 JOP): Southern whites are more prejudiced against blacks than non-southern whites – no "New South"
- The limitation of the original analysis:

So far our discussion has implicitly assumed that the higher level of prejudice among white southerners results from something uniquely "southern," what many would call southern culture. This assumption could be wrong. If white southerners were older, less educated, and the like – characteristics normally associated with greater prejudice – then demographics would explain the regional difference in racial attitudes

• Need for a multivariate regression analysis

Estimated Proportion of Prejudiced Whites



Regression adjustments and MLE yield more efficient estimates

Kosuke Imai (Princeton) Item Count Technique UCI (Statistics)

17/29

Studying Multiple Sensitive Items

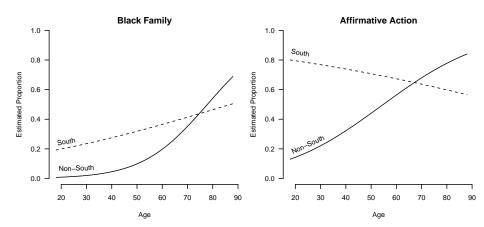
- The 1991 National Race and Politics Survey includes another treatment group with the following sensitive item
 - (4) "black leaders asking the government for affirmative action"
- Use of the same control items permits joint-modeling
- Same assumptions: No Design Effect and No Liars
- Extension to the design with K sensitive items: EM algorithm

Regression Results

- How do the patterns of generational changes differ between South and Non-South?
- Original analysis dichotomized the age variable without controlling for other factors

	Sensitive Items					Control Items	
	Black F	amily	Affirmative Action				
Variables	est.	s.e.	est.	s.e.	est.	s.e.	
intercept	−7.575	1.539	-5.270	1.268	1.389	0.143	
male	1.200	0.569	0.538	0.435	-0.325	0.076	
college	-0.259	0.496	-0.552	0.399	-0.533	0.074	
age	0.852	0.220	0.579	0.147	0.006	0.028	
South	4.751	1.850	5.660	2.429	-0.685	0.297	
South × age	-0.643	0.347	-0.833	0.418	0.093	0.061	
control items $Y_i(0)$	0.267	0.252	0.991	0.264			

Generational Changes in South and Non-South



- Age is important even after controlling for gender and education
- Gender is not in contradiction with the original analysis

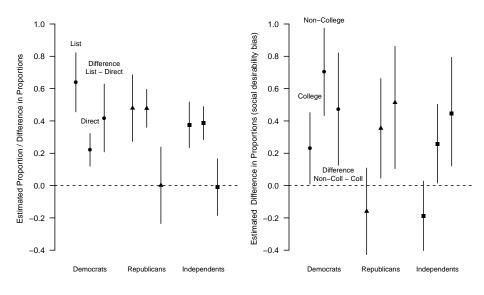
Measuring Social Desirability Bias

 The 1994 Multi-Investigator Survey (Sniderman et al.) asks list question and later a direct sensitive question:

```
Now I'm going to ask you about another thing that sometimes makes people angry or upset. Do you get angry or upset when black leaders ask the government for affirmative action?
```

- Indirect response: model using item count technique
- Direct response: model using logistic regression
- Difference: measure of social desirability bias

Differences for the Affirmative Action Item



When Can Item Count Technique Fail?

- Recall the two assumptions:
 - No Design Effect: The inclusion of the sensitive item does not affect answers to non-sensitive items
 - No Liars: Answers about the sensitive item are truthful
- Design Effect:
 - Respondents evaluate non-sensitive items relative to sensitive item
- Lies:
 - Ceiling effect: too many yeses for non-sensitive items
 - Floor effect: too many noes for non-sensitive items
- Both types of failures are difficult to detect
- Importance of choosing non-sensitive items
- Question: Can these failures be addressed statistically?

Hypothesis Test for Detecting Item Count Technique Failures

• Under the null hypothesis of no design effect and no liars, we expect all types (y, 1) > 0 and (y, 0) > 0

$$\pi_1 = \Pr(\text{type} = (y, 1)) = \Pr(Y_i \le y \mid T_i = 0) - \Pr(Y_i \le y \mid T_i = 1) \ge 0$$

 $\pi_0 = \Pr(\text{type} = (y, 0)) = \Pr(Y_i \le y \mid T_i = 1) - \Pr(Y_i < y \mid T_i = 0) \ge 0$

- Alternative hypothesis: At least one is negative
- A multivariate one-sided LR test for each t = 0, 1

$$\hat{\lambda}_t = \min_{\pi_t} (\hat{\pi}_t - \pi_t)^\top \hat{\Sigma}_t^{-1} (\hat{\pi}_t - \pi_t), \text{ subject to } \pi_t \geq 0,$$

- $\hat{\lambda}_t$ follows a mixture of χ^2
- Difficult to characterize least favorable values under the joint null

24 / 29

- Bonferroni correction: Reject the joint null if $min(\hat{p}_0, \hat{p}_1) \leq \alpha/2$
- GMS selection algorithm to increase statistical power

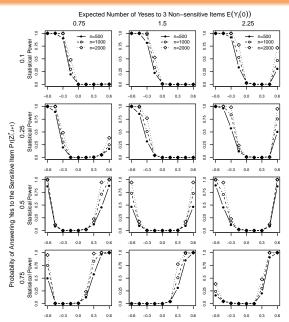
The Racial Prejudice Data Revisited

• Did the negative proportion arise by chance?

	Observed Data				Estimated Proportion of			
	Control		Treatment		Respondent Types			
Response	counts	prop.	counts	prop.	$\hat{\pi}_{y0}$	s.e.	$\hat{\pi}_{y1}$	s.e.
0	8	1.4%	19	3.0%	3.0%	0.7	-1.7%	0.8
1	132	22.4	123	19.7	21.4	1.7	1.0	2.4
2	222	37.7	229	36.7	35.7	2.6	2.0	2.8
3	227	38.5	219	35.1	33.1	2.2	5.4	0.9
4			34	5.4				
Total	589		624		93.2		6.8	

• Minimum p-value: 0.022

Statistical Power of the Proposed Test



Modeling Ceiling and Floor Effects

Potential liars:

Y_i	Treatment group	Control group
4	(3,1)	
3	$(2,1) (3,0) (3,1)^*$	(3,1) $(3,0)$
2	(1,1) (2,0)	(2,1) (2,0)
1	(0,1) (1,0)	(1,1) (1,0)
0	$(0,0) (0,1)^*$	(0,1) (0,0)

- Previous tests do not detect these liars: proportions would still be positive so long as there is no design effect
- Proposed strategy: model ceiling and/or floor effects under an additional assumption
- Identification assumption: conditional independence between items given covariates
- ML estimation can be extended to this situation.

Modeling Ceiling and Floor Effects

				1	Both Ce	iling	
Ceiling Effects Alone			Floor Effect	ts Alone	and Floor Effects		
Variables	est.	s.e.	est.	s.e.	est.	s.e.	
Intercept	-1.291	0.558 +	-1.251	0.501	-1.245	0.502	
Age	0.294	0.101	0.314	0.092	0.313	0.092	
College	-0.345	0.336	-0.605	0.298	-0.606	0.298	
Male	0.038	0.346	-0.088	0.300	-0.088	0.300	
South	1.175	0.480	0.682	0.335	0.681	0.335	
Prop. of liars				!			
Ceiling	0.0002	0.0017			0.0002	0.0016	
Floor		1	0.0115	0.0000	0.0115	0.0000	

- Essentially no ceiling and floor effects
- Main conclusion for the affirmative action item seems robust
- This approach can be extended to model certain design effects

Concluding Remarks and Practical Suggestions

- Item count technique: alternative to the randomized response method
- Advantages: easy to use, easy to understand
- Challenges:
 - loss of information due to indirect questioning
 - difficulty of exploring multivariate relationship
 - potential violation of assumptions
- Our methods partially overcome the difficulties
- Suggestions for analysis:
 - Estimate proportions of types and test design effects
 - 2 Conduct multivariate regression analyses
 - Investigate the robustness of findings to ceiling and floor effects
- Suggestions for design:
 - Select control items to avoid skewed response distribution
 - Avoid control items that are ambiguous and generate weak opinion

29 / 29

Conduct a pilot study and maximize statistical power