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Overview of the Workshop

A quick tour of modern causal inference methods

1 Randomized Experiments
Classical randomized experiments
Cluster randomized experiments
Instrumental variables

2 Observational Studies
Regression discontinuity design
Matching and weighting
Fixed effects and difference-in-differences

3 Causal Mechanisms
Direct and indirect effects
Causal mediation analysis
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Introduction
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What is Causal Inference?

Comparison between factual and counterfactual for each unit

Incumbency effect:
What would have been the election outcome if a candidate were
not an incumbent?

Resource curse thesis:
What would have been the GDP growth rate without oil?

Democratic peace theory:
Would the two countries have escalated crisis in the same
situation if they were both autocratic?

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 4 / 116

http://imai.Princeton.Edu/teaching/files/Cereal.mov


Defining Causal Effects

Units: i = 1, . . . ,n
“Treatment”: Ti = 1 if treated, Ti = 0 otherwise
Observed outcome: Yi

Pre-treatment covariates: Xi

Potential outcomes: Yi(1) and Yi(0) where Yi = Yi(Ti)

Voters Contact Turnout Age Party ID
i Ti Yi(1) Yi(0) Xi Xi
1 1 1 ? 20 D
2 0 ? 0 55 R
3 0 ? 1 40 R
...

...
...

...
...

...
n 1 0 ? 62 D

Causal effect: Yi(1)− Yi(0)
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The Key Assumptions

The notation implies three assumptions:
1 No simultaneity (different from endogeneity)
2 No interference between units: Yi (T1,T2, . . . ,Tn) = Yi (Ti )
3 Same version of the treatment

Stable Unit Treatment Value Assumption (SUTVA)
Potential violations:

1 feedback effects
2 spill-over effects, carry-over effects
3 different treatment administration

Potential outcome is thought to be “fixed”: data cannot distinguish
fixed and random potential outcomes
Potential outcomes across units have a distribution
Observed outcome is random because the treatment is random

Multi-valued treatment: more potential outcomes for each unit
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Average Treatment Effects

Sample Average Treatment Effect (SATE):

1
n

n∑
i=1

(Yi(1)− Yi(0))

Population Average Treatment Effect (PATE):

E(Yi(1)− Yi(0))

Population Average Treatment Effect for the Treated (PATT):

E(Yi(1)− Yi(0) | Ti = 1)

Treatment effect heterogeneity: Zero ATE doesn’t mean zero
effect for everyone! =⇒ Conditional ATE
Other quantities: Quantile treatment effects etc.
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Randomized Experiments
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Classical Randomized Experiments

Units: i = 1, . . . ,n
May constitute a simple random sample from a population
Treatment: Ti ∈ {0,1}
Outcome: Yi = Yi(Ti)

Complete randomization of the treatment assignment
Exactly n1 units receive the treatment
n0 = n − n1 units are assigned to the control group
Assumption: for all i = 1, . . . ,n,

∑n
i=1 Ti = n1 and

(Yi(1),Yi(0)) ⊥⊥ Ti , Pr(Ti = 1) =
n1

n
Estimand = SATE or PATE
Estimator = Difference-in-means:

τ̂ ≡ 1
n1

n∑
i=1

TiYi −
1
n0

n∑
i=1

(1− Ti)Yi
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Estimation of Average Treatment Effects

Key idea (Neyman 1923): Randomness comes from treatment
assignment (plus sampling for PATE) alone
Design-based (randomization-based) rather than model-based
Statistical properties of τ̂ based on design features

Define O ≡ {Yi(0),Yi(1)}ni=1

Unbiasedness (over repeated treatment assignments):

E(τ̂ | O) =
1
n1

n∑
i=1

E(Ti | O)Yi(1)− 1
n0

n∑
i=1

{1− E(Ti | O)}Yi(0)

=
1
n

n∑
i=1

(Yi(1)− Yi(0)) = SATE

Over repeated sampling: E(τ̂) = E(E(τ̂ | O)) = E(SATE) = PATE

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 10 / 116



Relationship with Regression

The model: Yi = α + βTi + εi where E(εi) = 0
Equivalence: least squares estimate β̂ =Difference in means

Potential outcomes representation:

Yi(Ti) = α + βTi + εi

Constant additive unit causal effect: Yi(1)− Yi(0) = β for all i
α = E(Yi(0))

A more general representation:

Yi(Ti) = α + βTi + εi(Ti) where E(εi(t)) = 0

Yi(1)− Yi(0) = β + εi(1)− εi(0)

β = E(Yi(1)− Yi(0))

α = E(Yi(0)) as before
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Bias of Model-Based Variance

The design-based perspective: use Neyman’s exact variance
What is the bias of the model-based variance estimator?
Finite sample bias:

Bias = E

(
σ̂2∑n

i=1(Ti − T n)2

)
−

(
σ2

1
n1

+
σ2

0
n0

)

=
(n1 − n0)(n − 1)

n1n0(n − 2)
(σ2

1 − σ2
0)

Bias is zero when n1 = n0 or σ2
1 = σ2

0

In general, bias can be negative or positive and does not
asymptotically vanish
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Robust Standard Error

Suppose V(εi | T ) = σ2(Ti) 6= σ2

Heteroskedasticity consistent robust variance estimator:

̂V((α̂, β̂) | T ) =

(
n∑

i=1

xix>i

)−1( n∑
i=1

ε̂2i xix>i

)(
n∑

i=1

xix>i

)−1

where in this case xi = (1,Ti) is a column vector of length 2
Model-based justification: asymptotically valid in the presence of
heteroskedastic errors
Design-based evaluation:

Finite Sample Bias = −

(
σ2

1

n2
1

+
σ2

0

n2
0

)

Bias vanishes asymptotically
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Cluster Randomized Experiments

Units: i = 1,2, . . . ,nj

Clusters of units: j = 1,2, . . . ,m
Treatment at cluster level: Tj ∈ {0,1}
Outcome: Yij = Yij(Tj)

Random assignment: (Yij(1),Yij(0))⊥⊥Tj

Estimands at unit level:

SATE ≡ 1∑m
j=1 nj

m∑
j=1

nj∑
i=1

(Yij(1)− Yij(0))

PATE ≡ E(Yij(1)− Yij(0))

Random sampling of clusters and units
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Merits and Limitations of CREs

Interference between units within a cluster is allowed
Assumption: No interference between units of different clusters
Often easy to implement: Mexican health insurance experiment

Opportunity to estimate the spill-over effects
D. W. Nickerson. Spill-over effect of get-out-the-vote canvassing
within household (APSR, 2008)

Limitations:
1 A large number of possible treatment assignments
2 Loss of statistical power
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Design-Based Inference

For simplicity, assume equal cluster size, i.e., nj = n for all j
The difference-in-means estimator:

τ̂ ≡ 1
m1

m∑
j=1

TjY j −
1

m0

m∑
j=1

(1− Tj)Y j

where Y j ≡
∑nj

i=1 Yij/nj

Easy to show E(τ̂ | O) = SATE and thus E(τ̂) = PATE
Exact population variance:

V(τ̂) =
V(Yj(1))

m1
+

V(Yj(0))

m0

Intracluster correlation coefficient ρt :

V(Yj(t)) =
σ2

t
n
{1 + (n − 1)ρt} ≤ σ2

t
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Cluster Standard Error

Cluster robust variance estimator:

̂V((α̂, β̂) | T ) =

 m∑
j=1

X>j Xj

−1 m∑
j=1

X>j ε̂j ε̂
>
j Xj

 m∑
j=1

X>j Xj

−1

where in this case Xj = [1Tj ] is an nj × 2 matrix and
ε̂j = (ε̂1j , . . . , ε̂nj j) is a column vector of length nj

Design-based evaluation (assume nj = n for all j):

Finite Sample Bias = −

(
V(Yj(1))

m2
1

+
V(Yj(0))

m2
0

)

Bias vanishes asymptotically as m→∞ with n fixed
Implication: cluster standard errors by the unit of treatment
assignment
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Example: Seguro Popular de Salud (SPS)

Evaluation of the Mexican universal health insurance program
Aim: “provide social protection in health to the 50 million
uninsured Mexicans”
A key goal: reduce out-of-pocket health expenditures
Sounds obvious but not easy to achieve in developing countries
Individuals must affiliate in order to receive SPS services
100 health clusters nonrandomly chosen for evaluation
Matched-pair design: based on population, socio-demographics,
poverty, education, health infrastructure etc.
“Treatment clusters”: encouragement for people to affiliate
Data: aggregate characteristics, surveys of 32,000 individuals
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Relative Efficiency of Matched-Pair Design (MPD)

Compare with completely-randomized design
Greater (positive) correlation within pair→ greater efficiency
UATE: MPD is between 1.1 and 2.9 times more efficient
PATE: MPD is between 1.8 and 38.3 times more efficient!

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
10

20
30

Relative Efficiency, UATE

R
el

at
iv

e 
E

ffi
ci

en
cy

, P
A

T
E

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 19 / 116



Partial Compliance in Randomized Experiments

Unable to force all experimental subjects to take the (randomly)
assigned treatment/control
Intention-to-Treat (ITT) effect 6= treatment effect
Selection bias: self-selection into the treatment/control groups

Political information bias: effects of campaign on voting behavior
Ability bias: effects of education on wages
Healthy-user bias: effects of exercises on blood pressure

Encouragement design: randomize the encouragement to receive
the treatment rather than the receipt of the treatment itself
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Potential Outcomes Notation

Randomized encouragement: Zi ∈ {0,1}
Potential treatment variables: (Ti(1),Ti(0))

1 Ti (z) = 1: would receive the treatment if Zi = z
2 Ti (z) = 0: would not receive the treatment if Zi = z

Observed treatment receipt indicator: Ti = Ti(Zi)

Observed and potential outcomes: Yi = Yi(Zi ,Ti(Zi))

Can be written as Yi = Yi(Zi)

No interference assumption for Ti(Zi) and Yi(Zi ,Ti)

Randomization of encouragement:

(Yi(1),Yi(0),Ti(1),Ti(0)) ⊥⊥ Zi

But (Yi(1),Yi(0)) 6⊥⊥ Ti | Zi = z, i.e., selection bias
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Principal Stratification Framework

Imbens and Angrist (1994, Econometrica); Angrist, Imbens, and
Rubin (1996, JASA)
Four principal strata (latent types):

compliers (Ti (1),Ti (0)) = (1,0),

non-compliers

 always − takers (Ti (1),Ti (0)) = (1,1),
never − takers (Ti (1),Ti (0)) = (0,0),

defiers (Ti (1),Ti (0)) = (0,1)

Observed and principal strata:
Zi = 1 Zi = 0

Ti = 1 Complier/Always-taker Defier/Always-taker

Ti = 0 Defier/Never-taker Complier/Never-taker
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Instrumental Variables and Causality

Randomized encouragement as an instrument for the treatment
Two additional assumptions

1 Monotonicity: No defiers

Ti (1) ≥ Ti (0) for all i .

2 Exclusion restriction: Instrument (encouragement) affects outcome
only through treatment

Yi (1, t) = Yi (0, t) for t = 0,1

Zero ITT effect for always-takers and never-takers
ITT effect decomposition:

ITT = ITTc × Pr(compliers) + ITTa × Pr(always− takers)

+ITTn × Pr(never− takers)

= ITTc Pr(compliers)

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 23 / 116



IV Estimand and Interpretation

IV estimand:

ITTc =
ITT

Pr(compliers)

=
E(Yi | Zi = 1)− E(Yi | Zi = 0)

E(Ti | Zi = 1)− E(Ti | Zi = 0)

=
Cov(Yi ,Zi)

Cov(Ti ,Zi)

ITTc = Complier Average Treatment Effect (CATE)
Local Average Treatment Effect (LATE)
CATE 6= ATE unless ATE for noncompliers equals CATE
Different encouragement (instrument) yields different compliers
Debate among Deaton, Heckman, and Imbens in J. of Econ. Lit.
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Violation of IV Assumptions

Violation of exclusion restriction:

Large sample bias = ITTnoncomplier
Pr(noncomplier)

Pr(complier)

Weak instruemnts (encouragement)
Direct effects of encouragement; failure of randomization,
alternative causal paths

Violation of monotonicity:

Large sample bias =
{CATE + ITTdefier}Pr(defier)

Pr(complier)− Pr(defier)

Proportion of defiers
Heterogeneity of causal effects
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An Example: Testing Habitual Voting

Gerber et al. (2003) AJPS
Randomized encouragement to vote in an election
Treatment: turnout in the election
Outcome: turnout in the next election

Monotonicity: Being contacted by a canvasser would never
discourage anyone from voting
Exclusion restriction: being contacted by a canvasser in this
election has no effect on turnout in the next election other than
through turnout in this election
CATE: Habitual voting for those who would vote if and only if they
are contacted by a canvasser in this election
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Concluding Remarks

Even randomized experiments often require sophisticated
statistical methods

Deviation from the protocol:
1 Spill-over, carry-over effects
2 Noncompliance
3 Missing data, measurement error

Beyond the average treatment effect:
1 Treatment effect heterogeneity
2 Causal mechanisms

Getting more out of randomized experiments:
1 Generalizing experimental results
2 Deriving individualized treatment rules
3 Studying dynamic treatment regimes
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Observational Studies
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Challenges of Observational Studies

Randomized experiments vs. Observational studies

Tradeoff between internal and external validity
Endogeneity: selection bias
Generalizability: sample selection, Hawthorne effects, realism

Statistical methods cannot replace good research design
“Designing” observational studies

Natural experiments (haphazard treatment assignment)
Examples: birthdays, weather, close elections, arbitrary
administrative rules and boundaries

“Replicating” randomized experiments

Key Questions:
1 Where are the counterfactuals coming from?
2 Is it a credible comparison?
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Coping with Endogeneity in Observational Studies

Selection bias in observational studies

Two common research design strategies:
1 Find a plausibly exogenous treatment
2 Find a plausibly exogenous instrument

A valid instrument satisfies the following conditions
1 Exogenously assigned – no confounding
2 It monotonically affects treatment
3 It affects outcome only through treatment – no direct effect

Challenge: plausibly exogenous instruments with no direct effect
tends to be weak

Another strategy: regression discontinuity design

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 30 / 116



Regression Discontinuity Design

Idea: Find an arbitrary cutpoint c which determines the treatment
assignment such that Ti = 1{Xi ≥ c}
Assumption: E(Yi(t) | Xi = x) is continuous in x
Estimand: E(Yi(1)− Yi(0) | Xi = c)

Regression modeling:

E(Yi(1) | Xi = c) = lim
x↓c

E(Yi(1) | Xi = x) = lim
x↓c

E(Yi | Xi = x)

E(Yi(0) | Xi = c) = lim
x↑c

E(Yi(0) | Xi = x) = lim
x↑c

E(Yi | Xi = x)

Advantage: internal validity
Disadvantage: external validity
Make sure nothing else is going on at Xi = c
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Close Elections as RD Design (Lee)

statistically significant. These data are consistent with implication (c) of Proposition 3, that all pre-determined
characteristics are balanced in a neighborhood of the discontinuity threshold. Figs. 2b, 3b, 4b, and 5b, also
corroborate this finding. These lower panels examine variables that have already been determined as of
election t: the average number of terms the candidate has served in Congress, the average number of times he
has been a nominee, as well as electoral outcomes for the party in election t� 1. The figures, which also
suggest that the fourth order polynomial approximations are adequate, show a smooth relation between each
variable and the Democratic vote share margin at t, as implied by (c) of Proposition 3.

The only differences in Table 1 that do not vanish completely as one examines closer and closer elections,
are the variables in the first two rows of Table 1. Of course, the Democratic vote share or the probability of a
Democratic victory in election tþ 1 is determined after the election t. Thus the discontinuity gap in the final
set of columns represents the RDD estimate of the causal effect of incumbency on those outcomes.

In the analysis of randomized experiments, analysts often include baseline covariates in a regression analysis
to reduce sampling variability in the impact estimates. Because the baseline covariates are independent of
treatment status, impact estimates are expected to be somewhat insensitive to the inclusion of these covariates.
Table 2 shows this to be true for these data: the results are quite robust to various specifications. Column (1)
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Placebo test for natural experiments
What is a good placebo?

1 expected not to have any effect
2 closely related to outcome of interest
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Fuzzy Regression Discontinuity Design

Sharp regression discontinuity design: Ti = 1{Xi ≥ c}
What happens if we have noncompliance?
Forcing variable as an instrument: Zi = 1{Xi ≥ c}
Potential outcomes: Ti(z) and Yi(z, t)

Monotonicity: Ti(1) ≥ Ti(0)

Exclusion restriction: Yi(0, t) = Yi(1, t)
E(Ti(z) | Xi = x) and E(Yi(z,Ti(z)) | Xi = x) are continuous in x
Estimand: E(Yi(1,Ti(1))− Yi(0,Ti(0)) | Complier ,Xi = c)

Estimator:

limx↓c E(Yi | Xi = x)− limx↑c E(Yi | Xi = x)

limx↓c E(Ti | Xi = x)− limx↑c E(Ti | Xi = x)

Disadvantage: external validity
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An Example: Class Size Effect (Angrist and Lavy)

Effect of class-size on student test scores
Maimonides’ Rule: Maximum class size = 40
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Identification of the Average Treatment Effect

Assumption 1: Overlap (i.e., no extrapolation)

0 < Pr(Ti = 1 | Xi = x) < 1 for any x ∈ X

Assumption 2: Ignorability (exogeneity, unconfoundedness, no
omitted variable, selection on observables, etc.)

{Yi(1),Yi(0)} ⊥⊥ Ti | Xi = x for any x ∈ X

Conditional expectation function: µ(t , x) = E(Yi(t) | Ti = t ,Xi = x)

Regression-based Estimator:

τ̂ =
1
n

n∑
i=1

{µ̂(1,Xi)− µ̂(0,Xi)}

Standard error: delta method is pain, but simulation is easy (Zelig)
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Matching as Nonparametric Preprocessing

READING: Ho et al. Political Analysis (2007)
Assume exogeneity holds: matching does NOT solve endogeneity
Need to model E(Yi | Ti ,Xi)

Parametric regression – functional-form/distributional assumptions
=⇒ model dependence
Non-parametric regression =⇒ curse of dimensionality
Preprocess the data so that treatment and control groups are
similar to each other w.r.t. the observed pre-treatment covariates

Goal of matching: achieve balance = independence between T
and X
“Replicate” randomized treatment w.r.t. observed covaraites
Reduced model dependence: minimal role of statistical modeling
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Sensitivity Analysis

Consider a simple pair-matching of treated and control units
Assumption: treatment assignment is “random”
Difference-in-means estimator

Question: How large a departure from the key (untestable)
assumption must occur for the conclusions to no longer hold?
Rosenbaum’s sensitivity analysis: for any pair j ,

1
Γ
≤

Pr(T1j = 1)/Pr(T1j = 0)

Pr(T2j = 1)/Pr(T2j = 0)
≤ Γ

Under ignorability, Γ = 1 for all j
How do the results change as you increase Γ?
Limitations of sensitivity analysis
FURTHER READING: P. Rosenbaum. Observational Studies.
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The Role of Propensity Score

The probability of receiving the treatment:

π(Xi) ≡ Pr(Ti = 1 | Xi)

The balancing property:

Ti ⊥⊥ Xi | π(Xi)

Exogeneity given the propensity score (under exogeneity given
covariates):

(Yi(1),Yi(0)) ⊥⊥ Ti | π(Xi)

Dimension reduction
But, true propensity score is unknown: propensity score tautology
(more later)
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Classical Matching Techniques

Exact matching

Mahalanobis distance matching:
√

(Xi − Xj)>Σ̃−1(Xi − Xj)

Propensity score matching
One-to-one, one-to-many, and subclassification
Matching with caliper

Which matching method to choose?
Whatever gives you the “best” balance!
Importance of substantive knowledge: propensity score matching
with exact matching on key confounders

FURTHER READING: Rubin (2006). Matched Sampling for Causal
Effects (Cambridge UP)
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How to Check Balance

Success of matching method depends on the resulting balance
How should one assess the balance of matched data?
Ideally, compare the joint distribution of all covariates for the
matched treatment and control groups
In practice, this is impossible when X is high-dimensional
Check various lower-dimensional summaries; (standardized)
mean difference, variance ratio, empirical CDF, etc.

Frequent use of balance test
t test for difference in means for each variable of X
other test statistics; e.g., χ2, F , Kolmogorov-Smirnov tests
statistically insignificant test statistics as a justification for the
adequacy of the chosen matching method and/or a stopping rule for
maximizing balance
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An Illustration of Balance Test Fallacy
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Recent Advances in Matching Methods

The main problem of matching: balance checking
Skip balance checking all together
Specify a balance metric and optimize it

Optimal matching (Rosenbaum, Hansen): minimize sum of
distances
Genetic matching (Diamond and Sekhon): maximize minimum
p-value
Coarsened exact matching (King et al.): exact match on binned
covariates
SVM subsetting (Ratkovic): find the largest, balanced subset for
general treatment regimes
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Inverse Propensity Score Weighting

Matching is inefficient because it throws away data
Weighting by inverse propensity score

1
n

n∑
i=1

(
TiYi

π̂(Xi)
− (1− Ti)Yi

1− π̂(Xi)

)
An improved weighting scheme:∑n

i=1{TiYi/π̂(Xi)}∑n
i=1{Ti/π̂(Xi)}

−
∑n

i=1{(1− Ti)Yi/(1− π̂(Xi))}∑n
i=1{(1− Ti)/(1− π̂(Xi))}

Unstable when some weights are extremely small
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Weighting Both Groups to Balance Covariates

Balancing condition: E
{

Ti Xi
π(Xi )

− (1−Ti )Xi
1−π(Xi )

}
= 0
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Weighting Control Group to Balance Covariates

Balancing condition: E
{

TiXi − π(Xi )(1−Ti )Xi
1−π(Xi )

}
= 0
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Efficient Doubly-Robust Estimators

The estimator by Robins et al. :

τ̂DR ≡

{
1
n

n∑
i=1

µ̂(1,Xi) +
1
n

n∑
i=1

Ti(Yi − µ̂(1,Xi))

π̂(Xi)

}

−

{
1
n

n∑
i=1

µ̂(0,Xi) +
1
n

n∑
i=1

(1− Ti)(Yi − µ̂(0,Xi))

1− π̂(Xi)

}

Consistent if either the propensity score model or the outcome
model is correct
(Semiparametrically) Efficient
FURTHER READING: Lunceford and Davidian (2004, Stat. in Med.)
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Propensity Score Tautology

Propensity score is unknown
Dimension reduction is purely theoretical: must model Ti given Xi

Diagnostics: covariate balance checking
In practice, adhoc specification searches are conducted
Model misspecification is always possible

Theory (Rubin et al.): ellipsoidal covariate distributions
=⇒ equal percent bias reduction
Skewed covariates are common in applied settings

Propensity score methods can be sensitive to misspecification
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Kang and Schafer (2007, Statistical Science)

Simulation study: the deteriorating performance of propensity
score weighting methods when the model is misspecified

Setup:
4 covariates X ∗i : all are i.i.d. standard normal
Outcome model: linear model
Propensity score model: logistic model with linear predictors
Misspecification induced by measurement error:

Xi1 = exp(X∗i1/2)
Xi2 = X∗i2/(1 + exp(X∗1i ) + 10)
Xi3 = (X∗i1X∗i3/25 + 0.6)3

Xi4 = (X∗i1 + X∗i4 + 20)2

Weighting estimators to be evaluated:
1 Horvitz-Thompson
2 Inverse-probability weighting with normalized weights
3 Weighted least squares regression
4 Doubly-robust least squares regression
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Weighting Estimators Do Fine If the Model is Correct
Bias RMSE

Sample size Estimator logit True logit True
(1) Both models correct

n = 200

HT 0.33 1.19 12.61 23.93
IPW −0.13 −0.13 3.98 5.03

WLS −0.04 −0.04 2.58 2.58
DR −0.04 −0.04 2.58 2.58

n = 1000

HT 0.01 −0.18 4.92 10.47
IPW 0.01 −0.05 1.75 2.22

WLS 0.01 0.01 1.14 1.14
DR 0.01 0.01 1.14 1.14

(2) Propensity score model correct

n = 200

HT −0.05 −0.14 14.39 24.28
IPW −0.13 −0.18 4.08 4.97

WLS 0.04 0.04 2.51 2.51
DR 0.04 0.04 2.51 2.51

n = 1000

HT −0.02 0.29 4.85 10.62
IPW 0.02 −0.03 1.75 2.27

WLS 0.04 0.04 1.14 1.14
DR 0.04 0.04 1.14 1.14
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Weighting Estimators are Sensitive to Misspecification
Bias RMSE

Sample size Estimator logit True logit True
(3) Outcome model correct

n = 200

HT 24.25 −0.18 194.58 23.24
IPW 1.70 −0.26 9.75 4.93

WLS −2.29 0.41 4.03 3.31
DR −0.08 −0.10 2.67 2.58

n = 1000

HT 41.14 −0.23 238.14 10.42
IPW 4.93 −0.02 11.44 2.21

WLS −2.94 0.20 3.29 1.47
DR 0.02 0.01 1.89 1.13

(4) Both models incorrect

n = 200

HT 30.32 −0.38 266.30 23.86
IPW 1.93 −0.09 10.50 5.08

WLS −2.13 0.55 3.87 3.29
DR −7.46 0.37 50.30 3.74

n = 1000

HT 101.47 0.01 2371.18 10.53
IPW 5.16 0.02 12.71 2.25

WLS −2.95 0.37 3.30 1.47
DR −48.66 0.08 1370.91 1.81
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Covariate Balancing Propensity Score

IMAI AND RATKOVIC (2014; JRSSB)
Recall the dual characteristics of propensity score

1 Conditional probability of treatment assignment
2 Covariate balancing score

Implied moment conditions:
1 Score equation:

E
{Tiπ

′
β(Xi )

πβ(Xi )
−

(1− Ti )π
′
β(Xi )

1− πβ(Xi )

}
= 0

2 Balancing condition:

E

{
Ti X̃i

πβ(Xi )
− (1− Ti )X̃i

1− πβ(Xi )

}
= 0

where X̃i = f (Xi ) is any vector-valued function
Use generalized method of moments for estimation
Estimate β to minimize imbalance

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 51 / 116



Revisiting Kang and Schafer (2007)
Bias RMSE

Sample size Estimator logit CBPS True logit CBPS True
(1) Both models correct

n = 200

HT −0.01 0.73 0.68 13.07 4.04 23.72
IPW −0.09 −0.09 −0.11 4.01 3.23 4.90
WLS 0.03 0.03 0.03 2.57 2.57 2.57
DR 0.03 0.03 0.03 2.57 2.57 2.57

n = 1000

HT −0.03 0.15 0.29 4.86 1.80 10.52
IPW −0.02 −0.03 −0.01 1.73 1.45 2.25
WLS −0.00 −0.00 −0.00 1.14 1.14 1.14
DR −0.00 −0.00 −0.00 1.14 1.14 1.14

(2) Propensity score model correct

n = 200

HT −0.32 0.55 −0.17 12.49 4.06 23.49
IPW −0.27 −0.26 −0.35 3.94 3.27 4.90
WLS −0.07 −0.07 −0.07 2.59 2.59 2.59
DR −0.07 −0.07 −0.07 2.59 2.59 2.59

n = 1000

HT 0.03 0.15 0.01 4.93 1.79 10.62
IPW −0.02 −0.03 −0.04 1.76 1.46 2.26
WLS −0.01 −0.01 −0.01 1.14 1.14 1.14
DR −0.01 −0.01 −0.01 1.14 1.14 1.14
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CBPS Makes Weighting Methods Work Better
Bias RMSE

Estimator logit CBPS1 CBPS2 True logit CBPS1 CBPS2 True
(3) Outcome model correct

n = 200

HT 24.25 1.09 −5.42 −0.18 194.58 5.04 10.71 23.24
IPW 1.70 −1.37 −2.84 −0.26 9.75 3.42 4.74 4.93
WLS −2.29 −2.37 −2.19 0.41 4.03 4.06 3.96 3.31
DR −0.08 −0.10 −0.10 −0.10 2.67 2.58 2.58 2.58

n = 1000

HT 41.14 −2.02 2.08 −0.23 238.14 2.97 6.65 10.42
IPW 4.93 −1.39 −0.82 −0.02 11.44 2.01 2.26 2.21
WLS −2.94 −2.99 −2.95 0.20 3.29 3.37 3.33 1.47
DR 0.02 0.01 0.01 0.01 1.89 1.13 1.13 1.13

(4) Both models incorrect

n = 200

HT 30.32 1.27 −5.31 −0.38 266.30 5.20 10.62 23.86
IPW 1.93 −1.26 −2.77 −0.09 10.50 3.37 4.67 5.08
WLS −2.13 −2.20 −2.04 0.55 3.87 3.91 3.81 3.29
DR −7.46 −2.59 −2.13 0.37 50.30 4.27 3.99 3.74

n = 1000

HT 101.47 −2.05 1.90 0.01 2371.18 3.02 6.75 10.53
IPW 5.16 −1.44 −0.92 0.02 12.71 2.06 2.39 2.25
WLS −2.95 −3.01 −2.98 0.19 3.30 3.40 3.36 1.47
DR −48.66 −3.59 −3.79 0.08 1370.91 4.02 4.25 1.81
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Matching Representation of Difference-in-Means

1 2 3 4 5

T T C C T

Y1 Y2 Y3 Y4 Y5

Units

Treatment status

Outcome

Estimating the Average Treatment Effect (ATE) via matching:

Y1 − 1
2

(Y3 + Y4)

Y2 − 1
2

(Y3 + Y4)

1
3

(Y1 + Y2 + Y5) − Y3

1
3

(Y1 + Y2 + Y5) − Y4

Y5 − 1
2

(Y3 + Y4)
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Matching Representation of Simple Regression

Simple linear regression model:

Yi = α + βXi + εi

Binary treatment: Xi ∈ {0,1}
Equivalent matching estimator:

β̂ =
1
N

N∑
i=1

(
Ŷi(1)− Ŷi(0)

)
where

Ŷi (1) =

{
Yi if Xi = 1

1∑N
i′=1

Xi′

∑N
i′=1 Xi′Yi′ if Xi = 0

Ŷi (0) =

{
1∑N

i′=1
(1−Xi′ )

∑N
i′=1(1− Xi′)Yi′ if Xi = 1

Yi if Xi = 0

Treated units matched with the average of non-treated units
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One-Way Fixed Effects Regression

Simple (one-way) FE model:

Yit = αi + βXit + εit

Commonly used by applied researchers:
Stratified randomized experiments (Duflo et al. 2007)
Stratification and matching in observational studies
Panel data, both experimental and observational

β̂FE may be biased for the ATE even if Xit is exogenous within
each unit
It converges to the weighted average of conditional ATEs:

β̂FE
p−→

E{ATEi σ
2
i }

E(σ2
i )

where σ2
i =

∑T
t=1(Xit − X i)

2/T

How are counterfactual outcomes estimated under the FE model?
Unit fixed effects =⇒ within-unit comparison
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Mismatches in One-Way Fixed Effects Model
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Matching Representation of Fixed Effects Regression

Proposition 1

β̂FE =
1
K

{
1

NT

N∑
i=1

T∑
t=1

(
Ŷit (1)− Ŷit (0)

)}
,

Ŷit (x) =

{
Yit if Xit = x

1
T−1

∑
t′ 6=t Yit′ if Xit = 1− x for x = 0, 1

K =
1

NT

N∑
i=1

T∑
t=1

Xit ·
1

T − 1

∑
t′ 6=t

(1− Xit′ ) + (1− Xit ) ·
1

T − 1

∑
t′ 6=t

Xit′

 .

K : average proportion of proper matches across all observations
More mismatches =⇒ larger adjustment
Adjustment is required except very special cases
“Fixes” attenuation bias but this adjustment is not sufficient
Fixed effects estimator is a special case of matching estimators
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Unadjusted Matching Estimator
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Only equal to fixed effects estimator if heterogeneity in either
treatment assignment or treatment effect is non-existent
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Unadjusted Matching = Weighted FE Estimator

Proposition 2
The unadjusted matching estimator

β̂M =
1

NT

N∑
i=1

T∑
t=1

(
Ŷit (1)− Ŷit (0)

)
where

Ŷit (1) =

 Yit if Xit = 1∑T
t′=1 Xit′Yit′∑T

t′=1
Xit′

if Xit = 0 and Ŷit (0) =


∑T

t′=1(1−Xit′ )Yit′∑T
t′=1

(1−Xit′ )
if Xit = 1

Yit if Xit = 0

is equivalent to the weighted fixed effects model

(α̂M , β̂M ) = argmin
(α,β)

N∑
i=1

T∑
t=1

Wit (Yit − αi − βXit )
2

Wit ≡


T∑T

t′=1
Xit′

if Xit = 1,
T∑T

t′=1
(1−Xit′ )

if Xit = 0.
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Equal Weights
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Different Weights
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various quantities (ATE, ATT, etc.)
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First Difference = Matching = Weighted One-Way FE

∆Yit = β∆Xit + εit where ∆Yit = Yit − Yi,t−1, ∆Xit = Xit − Xi,t−1

C

T

C

T

T

C

C

T

C

T

T

T

C

T

C

C

T

C

C

T

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�

Treatment

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

�
�

�
��

�
�
�

�
�

�
�

�
�

�
�

Weights

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 63 / 116



Mismatches in Two-Way FE Model

Yit = αi + γt + βXit + εit
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Mismatches in Weighted Two-Way FE Model
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Cross Section Analysis = Weighted Time FE Model
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First Difference = Weighted Unit FE Model
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What about Difference-in-Differences (DiD)?
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Two-Way Fixed Effects = DiD in 2 Time-Period Case

Two-way fixed effects model:

Yti(z) = αi + βz + γt + εit

where z = 0,1 is the treatment status and t is the time
The model implies:

Yi0(0) = αi + εi0
Yi1(0) = αi + γ + εi1
Yi1(1) = αi + β + γ + εi1

Assumption: E(Yi1(0)− Yi0(0) | Zi1 = z) = γ

Or equivalently E(εi1 − εi0 | Zi1 = z) = 0
Both Zit and εit can depend on αi

Neither stronger or weaker than the standard exogeneity
assumption
When Yi0 = Yi0(0) is balanced, they are equivalent
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General DiD = Weighted Two-Way (Unit and Time) FE

General setting: Multiple time periods, repeated treatments
Standard two-way fixed effects 6= DiD
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Fast computation is available
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Effects of GATT Membership on International Trade

1 Controversy
Rose (2004): No effect of GATT membership on trade
Tomz et al. (2007): Significant effect with non-member participants

2 The central role of fixed effects models:
Rose (2004): one-way (year) fixed effects for dyadic data
Tomz et al. (2007): two-way (year and dyad) fixed effects
Rose (2005): “I follow the profession in placing most confidence in
the fixed effects estimators; I have no clear ranking between
country-specific and country pair-specific effects.”
Tomz et al. (2007): “We, too, prefer FE estimates over OLS on both
theoretical and statistical ground”
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Data and Methods

1 Data
Data set from Tomz et al. (2007)
Effect of GATT: 1948 – 1994
162 countries, and 196,207 (dyad-year) observations

2 Year fixed effects model:

ln Yit = αt + βXit + δ>Zit + εit

Xit : membership (formal/participants) Both vs. One/None
Zit : 15 dyad-varying covariates (e.g., log product GDP)

3 Weighted one-way fixed effects model:

argmin
(α,β,δ)

N∑
i=1

T∑
t=1

Wit (ln Yit − αt − βXit − δ>Zit )
2
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Empirical Results
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Concluding Remarks

Matching and weighting methods do:
make causal assumptions transparent by identifying counterfactuals
make regression models robust by reducing model dependence

Matching and weighting methods cannot solve endogeneity
Only good research design can overcome endogeneity

Recent advances in matching and weighting methods: directly
optimize balance

Next methodological challenges: panel data
Fixed effects regression assumes no carry-over effect
They do not model dynamic treatment regimes

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 74 / 116



Causal Mechanisms
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Identifying Causal Mechanisms

Randomized experiments as gold standard for causal inference
But, experiments are a black box
Can only tell whether the treatment causally affects the outcome
Not how and why the treatment affects the outcome
Qualitative research uses process tracing

Question: How can we learn about causal mechanisms from
experimental and observational studies?

IMAI, KEELE, TINGLEY, AND YAMAMOTO (2011) UNPACKING THE

BLACK BOX OF CAUSALITY. American Political Science Review
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Causal Mediation Analysis

Graphical representation
Mediator, M

Treatment, T Outcome, Y

Goal is to decompose total effect into direct and indirect effects
Alternative approach: decompose the treatment into different
components
Causal mediation analysis as quantitative process tracing
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Decomposition of Incumbency Advantage

Incumbency effects: one of the most studied topics in American
politics
Consensus emerged in 1980s: incumbency advantage is positive
and growing in magnitude

New direction in 1990s: Where does incumbency advantage
come from?
Scare-off/quality effect (Cox and Katz): the ability of incumbents to
deter high-quality challengers from entering the race
Alternative causal mechanisms: name recognition, campaign
spending, personal vote, television, etc.
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Causal Mediation Analysis in Cox and Katz

Quality of challenger, M

Incumbency, T Electoral outcome, Y

How much of incumbency advantage can be explained by
scare-off/quality effect?
How large is the mediation effect relative to the total effect?
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Psychological Study of Media Effects

Large literature on how media influences public opinion
A media framing experiment of Brader et al.:

1 (White) Subjects read a mock news story about immigration:
Treatment: Hispanic immigrant in the story
Control: European immigrant in the story

2 Measure attitudinal and behavioral outcome variables:
Opinions about increasing or decrease immigration
Contact legislator about the issue
Send anti-immigration message to legislator

Why is group-based media framing effective?: role of emotion
Hypothesis: Hispanic immigrant increases anxiety, leading to
greater opposition to immigration

The primary goal is to examine how, not whether, media framing
shapes public opinion
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Causal Mediation Analysis in Brader et al.

Anxiety, M

Media Cue, T Immigration Attitudes, Y

Does the media framing shape public opinion by making people
anxious?
An alternative causal mechanism: change in beliefs
Can we identify mediation effects from randomized experiments?
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The Standard Estimation Method

Linear models for mediator and outcome:

Yi = α1 + β1Ti + ξ>1 Xi + ε1i

Mi = α2 + β2Ti + ξ>2 Xi + ε2i

Yi = α3 + β3Ti + γMi + ξ>3 Xi + ε3i

where Xi is a set of pre-treatment or control variables
1 Total effect (ATE) is β1
2 Direct effect is β3
3 Indirect or mediation effect is β2γ
4 Effect decomposition: β1 = β3 + β2γ.

Some motivating questions:
1 What should we do when we have interaction or nonlinear terms?
2 What about other models such as logit?
3 In general, under what conditions can we interpret β1 and β2γ as

causal effects?
4 What do we really mean by causal mediation effect anyway?

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 82 / 116



Potential Outcomes Framework of Causal Inference

Observed data:

Binary treatment: Ti ∈ {0,1}
Mediator: Mi ∈M
Outcome: Yi ∈ Y
Observed pre-treatment covariates: Xi ∈ X

Potential outcomes model (Neyman, Rubin):
Potential mediators: Mi (t) where Mi = Mi (Ti )
Potential outcomes: Yi (t ,m) where Yi = Yi (Ti ,Mi (Ti ))

Total causal effect:

τi ≡ Yi(1,Mi(1))− Yi(0,Mi(0))

Fundamental problem of causal inference: only one potential
outcome can be observed for each i
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Back to the Examples

Mi(1):
1 Quality of her challenger if politician i is an incumbent
2 Level of anxiety individual i would report if he reads the story with

Hispanic immigrant

Yi(1,Mi(1)):
1 Election outcome that would result if politician i is an incumbent

and faces a challenger whose quality is Mi (1)
2 Immigration attitude individual i would report if he reads the story

with Hispanic immigrant and reports the anxiety level Mi (1)

Mi(0) and Yi(0,Mi(0)) are the converse
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Causal Mediation Effects

Causal mediation (Indirect) effects:

δi(t) ≡ Yi(t ,Mi(1))− Yi(t ,Mi(0))

Causal effect of the change in Mi on Yi that would be induced by
treatment
Change the mediator from Mi(0) to Mi(1) while holding the
treatment constant at t
Represents the mechanism through Mi

Zero treatment effect on mediator =⇒ Zero mediation effect

Examples:
1 Part of incumbency advantage that is due to the difference in

challenger quality induced by incumbency status
2 Difference in immigration attitudes that is due to the change in

anxiety induced by the treatment news story

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 85 / 116



Total Effect = Indirect Effect + Direct Effect

Direct effects:

ζi(t) ≡ Yi(1,Mi(t))− Yi(0,Mi(t))

Causal effect of Ti on Yi , holding mediator constant at its potential
value that would realize when Ti = t
Change the treatment from 0 to 1 while holding the mediator
constant at Mi(t)
Represents all mechanisms other than through Mi

Total effect = mediation (indirect) effect + direct effect:

τi = δi(t) + ζi(1− t) =
1
2
{(δi(0) + ζi(0)) + (δi(1) + ζi(1))}
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Mechanisms, Manipulations, and Interactions

Mechanisms
Indirect effects: δi(t) ≡ Yi(t ,Mi(1))− Yi(t ,Mi(0))

Counterfactuals about treatment-induced mediator values

Manipulations
Controlled direct effects: ξi(t ,m,m′) ≡ Yi(t ,m)− Yi(t ,m′)
Causal effect of directly manipulating the mediator under Ti = t

Interactions
Interaction effects: ξ(1,m,m′)− ξ(0,m,m′)
The extent to which controlled direct effects vary by the treatment
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What Does the Observed Data Tell Us?

Recall the Brader et al. experimental design:
1 randomize Ti
2 measure Mi and then Yi

Among observations with Ti = t , we observe Yi(t ,Mi(t)) but not
Yi(t ,Mi(1− t)) unless Mi(t) = Mi(1− t)
But we want to estimate

δi(t) ≡ Yi(t ,Mi(1))− Yi(t ,Mi(0))

For t = 1, we observe Yi(1,Mi(1)) but not Yi(1,Mi(0))

Similarly, for t = 0, we observe Yi(0,Mi(0)) but not Yi(0,Mi(1))

We have the identification problem =⇒ Need assumptions or
better research designs
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Counterfactuals in the Examples

1 Incumbency advantage:
An incumbent (Ti = 1) faces a challenger with quality Mi (1)
We observe the electoral outcome Yi = Yi (1,Mi (1))
We also want Yi (1,Mi (0)) where Mi (0) is the quality of challenger
this incumbent politician would face if she is not an incumbent

2 Media framing effects:
A subject viewed the news story with Hispanic immigrant (Ti = 1)
For this person, Yi (1,Mi (1)) is the observed immigration opinion
Yi (1,Mi (0)) is his immigration opinion in the counterfactual world
where he still views the story with Hispanic immigrant but his
anxiety is at the same level as if he viewed the control news story

In both cases, we can’t observe Yi(1,Mi(0)) because Mi(0) is not
realized when Ti = 1
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Sequential Ignorability Assumption

Proposed identification assumption: Sequential Ignorability (SI)

{Yi(t ′,m),Mi(t)} ⊥⊥ Ti | Xi = x , (1)

Yi(t ′,m) ⊥⊥ Mi(t) | Ti = t ,Xi = x (2)

In words,
1 Ti is (as-if) randomized conditional on Xi = x
2 Mi (t) is (as-if) randomized conditional on Xi = x and Ti = t

Important limitations:
1 In a standard experiment, (1) holds but (2) may not
2 Xi needs to include all confounders
3 Xi must be pre-treatment confounders =⇒ post-treatment

confounder is not allowed
4 Randomizing Mi via manipulation is not the same as assuming

Mi (t) is as-if randomized

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 90 / 116



Sequential Ignorability in the Standard Experiment

Back to Brader et al.:
Treatment is randomized =⇒ (1) is satisfied
But (2) may not hold:

1 Pre-treatment confounder or Xi : state of residence
those who live in AZ tend to have higher levels of perceived harm
and be opposed to immigration

2 Post-treatment confounder: alternative mechanism
beliefs about the likely negative impact of immigration makes
people anxious

Pre-treatment confounders =⇒ measure and adjust for them
Post-treatment confounders =⇒ adjusting is not sufficient
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Nonparametric Identification

Under SI, both ACME and average direct effects are nonparametrically
identified (can be consistently estimated without modeling assumption)

ACME δ̄(t)∫ ∫
E(Yi | Mi ,Ti = t ,Xi ) {dP(Mi | Ti = 1,Xi )− dP(Mi | Ti = 0,Xi )} dP(Xi )

Average direct effects ζ̄(t)∫ ∫
{E(Yi | Mi ,Ti = 1,Xi )− E(Yi | Mi ,Ti = 0,Xi )} dP(Mi | Ti = t ,Xi ) dP(Xi )

Implies the general mediation formula under any statistical model
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Traditional Estimation Methods: LSEM

Linear structural equation model (LSEM):

Mi = α2 + β2Ti + ξ>2 Xi + εi2,

Yi = α3 + β3Ti + γMi + ξ>3 Xi + εi3.

Fit two least squares regressions separately
Use product of coefficients (β̂2γ̂) to estimate ACME
Use asymptotic variance to test significance (Sobel test)

Under SI and the no-interaction assumption (δ̄(1) 6= δ̄(0)), β̂2γ̂
consistently estimates ACME
Can be extended to LSEM with interaction terms

Problem: Only valid for the simplest LSEM
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Popular Baron-Kenny Procedure

The procedure:
1 Regress Y on T and show a significant relationship
2 Regress M on T and show a significant relationship
3 Regress Y on M and T , and show a significant relationship

between Y and M

The problems:
1 First step can lead to false negatives especially if indirect and direct

effects in opposite directions
2 The procedure only anticipates simplest linear models
3 Don’t do star-gazing. Report quantities of interest
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Proposed General Estimation Algorithm

1 Model outcome and mediator
Outcome model: p(Yi | Ti ,Mi ,Xi )
Mediator model: p(Mi | Ti ,Xi )
These models can be of any form (linear or nonlinear, semi- or
nonparametric, with or without interactions)

2 Predict mediator for both treatment values (Mi(1), Mi(0))
3 Predict outcome by first setting Ti = 1 and Mi = Mi(0), and then

Ti = 1 and Mi = Mi(1)

4 Compute the average difference between two outcomes to obtain
a consistent estimate of ACME

5 Monte-Carlo or bootstrap to estimate uncertainty
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Example: Binary Mediator and Outcome

Two logistic regression models:

Pr(Mi = 1 | Ti ,Xi) = logit−1(α2 + β2Ti + ξ>2 Xi)

Pr(Yi = 1 | Ti ,Mi ,Xi) = logit−1(α3 + β3Ti + γMi + ξ>3 Xi)

Can’t multiply β2 by γ
Difference of coefficients β1 − β3 doesn’t work either

Pr(Yi = 1 | Ti ,Xi) = logit−1(α1 + β1Ti + ξ>1 Xi)

Can use our algorithm (example: E{Yi(1,Mi(0))})
1 Predict Mi (0) given Ti = 0 using the first model
2 Compute Pr(Yi (1,Mi (0)) = 1 | Ti = 1,Mi = M̂i (0),Xi ) using the

second model
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Sensitivity Analysis

Standard experiments require sequential ignorability to identify
mechanisms
The sequential ignorability assumption is often too strong

Need to assess the robustness of findings via sensitivity analysis
Question: How large a departure from the key assumption must
occur for the conclusions to no longer hold?
Parametric sensitivity analysis by assuming

{Yi(t ′,m),Mi(t)} ⊥⊥ Ti | Xi = x

but not
Yi(t ′,m) ⊥⊥ Mi(t) | Ti = t ,Xi = x

Possible existence of unobserved pre-treatment confounder
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Parametric Sensitivity Analysis

Sensitivity parameter: ρ ≡ Corr(εi2, εi3)

Sequential ignorability implies ρ = 0
Set ρ to different values and see how ACME changes

Result:

δ̄(0) = δ̄(1) =
β2σ1

σ2

{
ρ̃− ρ

√
(1− ρ̃2)/(1− ρ2)

}
,

where σ2
j ≡ var(εij) for j = 1,2 and ρ̃ ≡ Corr(εi1, εi2).

When do my results go away completely?
δ̄(t) = 0 if and only if ρ = ρ̃

Easy to estimate from the regression of Yi on Ti :

Yi = α1 + β1Ti + εi1
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Interpreting Sensitivity Analysis with R squares

Interpreting ρ: how small is too small?

An unobserved (pre-treatment) confounder formulation:

εi2 = λ2Ui + ε′i2 and εi3 = λ3Ui + ε′i3

How much does Ui have to explain for our results to go away?

Sensitivity parameters: R squares
1 Proportion of previously unexplained variance explained by Ui

R2∗
M ≡ 1−

var(ε′i2)

var(εi2)
and R2∗

Y ≡ 1−
var(ε′i3)

var(εi3)

2 Proportion of original variance explained by Ui

R̃2
M ≡

var(εi2)− var(ε′i2)

var(Mi )
and R̃2

Y ≡
var(εi3)− var(ε′i3)

var(Yi )
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Then reparameterize ρ using (R2∗
M ,R2∗

Y ) (or (R̃2
M , R̃

2
Y )):

ρ = sgn(λ2λ3)R∗MR∗Y =
sgn(λ2λ3)R̃MR̃Y√
(1− R2

M)(1− R2
Y )
,

where R2
M and R2

Y are from the original mediator and outcome
models

sgn(λ2λ3) indicates the direction of the effects of Ui on Yi and Mi

Set (R2∗
M ,R2∗

Y ) (or (R̃2
M , R̃

2
Y )) to different values and see how

mediation effects change
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Reanalysis: Estimates under Sequential Ignorability

Original method: Product of coefficients with the Sobel test
— Valid only when both models are linear w/o T –M interaction
(which they are not)
Our method: Calculate ACME using our general algorithm

Product of Average Causal
Outcome variables Coefficients Mediation Effect (δ)

Decrease Immigration .347 .105
δ̄(1) [0.146, 0.548] [0.048, 0.170]

Support English Only Laws .204 .074
δ̄(1) [0.069, 0.339] [0.027, 0.132]

Request Anti-Immigration Information .277 .029
δ̄(1) [0.084, 0.469] [0.007, 0.063]

Send Anti-Immigration Message .276 .086
δ̄(1) [0.102, 0.450] [0.035, 0.144]
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Reanalysis: Sensitivity Analysis w.r.t. ρ

−1.0 −0.5 0.0 0.5 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Sensitivity Parameter: ρ

A
ve

ra
ge

 M
ed

ia
tio

n 
E

ffe
ct

: δ
(1

)

ACME > 0 as long as the error correlation is less than 0.39
(0.30 with 95% CI)

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 102 / 116



Reanalysis: Sensitivity Analysis w.r.t. R̃2
M and R̃2
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An unobserved confounder can account for up to 26.5% of the variation
in both Yi and Mi before ACME becomes zero
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Open-Source Software “Mediation”
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Implementation Examples

1 Fit models for the mediator and outcome variable and store these
models
> m <- lm(Mediator ~ Treat + X)
> y <- lm(Y ~ Treat + Mediator + X)

2 Mediation analysis: Feed model objects into the mediate()
function. Call a summary of results
> m.out<-mediate(m, y, treat = "Treat",

mediator = "Mediator")
> summary(m.out)

3 Sensitivity analysis: Feed the output into the medsens() function.
Summarize and plot
> s.out <- medsens(m.out)
> summary(s.out)
> plot(s.out, "rho")
> plot(s.out, "R2")
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Beyond Sequential Ignorability

Without sequential ignorability, standard experimental design
lacks identification power
Even the sign of ACME is not identified

Need to develop alternative experimental designs for more
credible inference
Possible when the mediator can be directly or indirectly
manipulated
All proposed designs preserve the ability to estimate the ACME
under the SI assumption
Trade-off: statistical power

These experimental designs can then be extended to natural
experiments in observational studies

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 106 / 116



Parallel Design

 
 
 
 

Must assume no direct effect of manipulation on outcome
More informative than standard single experiment
If we assume no T –M interaction, ACME is point identified
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Why Do We Need No-Interaction Assumption?

Numerical Example:

Prop. Mi(1) Mi(0) Yi(t ,1) Yi(t ,0) δi(t)
0.3 1 0 0 1 −1
0.3 0 0 1 0 0
0.1 0 1 0 1 1
0.3 1 1 1 0 0

E(Mi(1)−Mi(0)) = E(Yi(t ,1)− Yi(t ,0)) = 0.2, but δ̄(t) = −0.2

The Problem: Causal effect heterogeneity
T increases M only on average
M increases Y only on average
T −M interaction: Many of those who have a positive effect of T on
M have a negative effect of M on Y (first row)

A solution: sensitivity analysis (see Imai and Yamamoto, 2013)
Pitfall of “mechanism experiments” or “causal chain approach”
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Encouragement Design

Direct manipulation of mediator is difficult in most situations
Use an instrumental variable approach:

Advantage: allows for unobserved confounder between M and Y
Key Assumptions:

1 Z is randomized or as-if random
2 No direct effect of Z on Y (a.k.a. exclusion restriction)

Kosuke Imai (Princeton) Statistics & Causal Inference Taipei (February 2014) 109 / 116



Example: Social Norm Experiment on Property Taxes

Lucia Del Carpio. “Are Neighbors Cheating?”
Treatment: informing average rate of compliance
Outcome: compliance rate obtained from administrative records
Large positive effect on compliance rate ≈ 20 percentage points
Mediators:

1 social norm (not measured; direct effect)
2 M1: beliefs about compliance (measured)
3 M2: beliefs about enforcement (measured)

Instruments:
1 Z1: informing average rate of enforcement
2 Z2: payment-reminder

Assumptions:
1 Z1 affects Y only through M1 and M2
2 Z2 affects Y only through M1

Results:
Average direct effect is estimated to be large
The author interprets this effect as the effect of social norm
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Crossover Design

Recall ACME can be identified if we observe Yi(t ′,Mi(t))

Get Mi(t), then switch Ti to t ′ while holding Mi = Mi(t)

Crossover design:
1 Round 1: Conduct a standard experiment
2 Round 2: Change the treatment to the opposite status but fix the

mediator to the value observed in the first round

Very powerful – identifies mediation effects for each subject
Must assume no carryover effect: Round 1 must not affect Round
2
Can be made plausible by design
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Example: Labor Market Discrimination

EXAMPLE Bertrand & Mullainathan (2004, AER)
Treatment: Black vs. White names on CVs
Mediator: Perceived qualifications of applicants
Outcome: Callback from employers

Quantity of interest: Direct effects of (perceived) race
Would Jamal get a callback if his name were Greg but his
qualifications stayed the same?

Round 1: Send Jamal’s actual CV and record the outcome
Round 2: Send his CV as Greg and record the outcome

Assumption: their different names do not change the perceived
qualifications of applicants
Under this assumption, the direct effect can be interpreted as
blunt racial discrimination
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Designing Observational Studies

Key difference between experimental and observational studies:
treatment assignment
Sequential ignorability:

1 Ignorability of treatment given covariates
2 Ignorability of mediator given treatment and covariates

Both (1) and (2) are suspect in observational studies

Statistical control: matching, propensity scores, etc.
Search for quasi-randomized treatments: “natural” experiments

How can we design observational studies?
Experiments can serve as templates for observational studies
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Cross-over Design in Observational Studies

EXAMPLE Back to incumbency advantage
Use of cross-over design (Levitt and Wolfram)

1 1st Round: two non-incumbents in an open seat
2 2nd Round: same candidates with one being an incumbent

Assume challenger quality (mediator) stays the same
Estimation of direct effect is possible

Redistricting as natural experiments (Ansolabehere et al.)
1 1st Round: incumbent in the old part of the district
2 2nd Round: incumbent in the new part of the district

Challenger quality is the same but treatment is different
Estimation of direct effect is possible
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Multiple Mediators

Quantity of interest = The average indirect effect with respect to M
W represents the alternative observed mediators

Left: Assumes independence between the two mechanisms
Right: Allows M to be affected by the other mediators W

Applied work often assumes the independence of mechanisms
Under this independence assumption, one can apply the same
analysis as in the single mediator case
For causally dependent mediators, we must deal with the
heterogeneity in the T ×M interaction as done under the parallel
design =⇒ sensitivity analysis
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Concluding Remarks

Even in a randomized experiment, a strong assumption is needed
to identify causal mechanisms

However, progress can be made toward this fundamental goal of
scientific research with modern statistical tools

A general, flexible estimation method is available once we assume
sequential ignorability

Sequential ignorability can be probed via sensitivity analysis

More credible inferences are possible using clever experimental
designs

Insights from new experimental designs can be directly applied
when designing observational studies

Multiple mediators require additional care when they are causally
dependent
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