When Should We Use Linear Fixed Effects Regression Models for Causal Inference with Longitudinal Data?

Kosuke Imai Princeton University

Asian Political Methodology Conference University of Sydney

Joint work with In Song Kim (MIT)

January 10, 2017

Fixed Effects Regressions in Causal Inference

- Linear fixed effects regression models are the primary workhorse for causal inference with longitudinal/panel data
- Researchers use them to adjust for unobserved time-invariant confounders (omitted variables, endogeneity, selection bias, ...):
 - "Good instruments are hard to find ..., so we'd like to have other tools to deal with unobserved confounders. This chapter considers ... strategies that use data with a time or cohort dimension to control for unobserved but fixed omitted variables" (Angrist & Pischke, *Mostly Harmless Econometrics*)
 - "fixed effects regression can scarcely be faulted for being the bearer of bad tidings" (Green *et al.*, *Dirty Pool*)
- When should we use linear FE regression models for causal inference?

Linear Regression with Unit Fixed Effects

- Balanced panel data with N units and T time periods
- Y_{it}: outcome variable
- X_{it}: binary causal or treatment variable of interest

Assumption 1 (Linearity)

$$Y_{it} = \alpha_i + \beta X_{it} + \epsilon_{it}$$

- U_i: a vector of unobserved time-invariant confounders
- $\alpha_i = h(\mathbf{U}_i)$ for *any* function $h(\cdot)$
- A flexible way to adjust for unobservables
- Average contemporaneous treatment effect:

$$\beta = \mathbb{E}(Y_{it}(1) - Y_{it}(0))$$

Strict Exogeneity and Least Squares Estimator

Assumption 2 (Strict Exogeneity)

 $\epsilon_{it} \perp\!\!\!\perp \{ \mathbf{X}_i, \mathbf{U}_i \}$

- Mean independence is sufficient: $\mathbb{E}(\epsilon_{it} \mid \mathbf{X}_i, \mathbf{U}_i) = \mathbb{E}(\epsilon_{it}) = 0$
- Least squares estimator based on de-meaning:

$$\hat{\beta}_{\mathsf{FE}} = \arg\min_{\beta} \sum_{i=1}^{N} \sum_{t=1}^{T} \{ (Y_{it} - \overline{Y}_i) - \beta (X_{it} - \overline{X}_i) \}^2$$

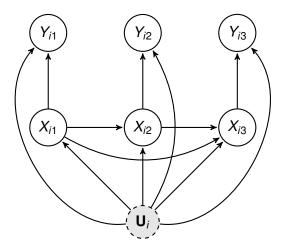
where \overline{X}_i and \overline{Y}_i are unit-specific sample means

• ATE among those units with variation in treatment:

$$\tau = \mathbb{E}(Y_{it}(1) - Y_{it}(0) \mid C_{it} = 1)$$

where $C_{it} = \mathbf{1} \{ 0 < \sum_{t=1}^{T} X_{it} < T \}.$

Causal Directed Acyclic Graph (DAG)



- arrow = direct causal effect
- absence of arrows
 - \rightsquigarrow causal assumptions

Nonparametric Structural Equation Model (NPSEM)

• One-to-one correspondence with a DAG:

$$Y_{it} = g_1(X_{it}, \mathbf{U}_i, \epsilon_{it})$$

$$X_{it} = g_2(X_{i1}, \dots, X_{i,t-1}, \mathbf{U}_i, \eta_{it})$$

• Nonparametric generalization of linear unit fixed effects model:

- Allows for nonlinear relationships, effect heterogeneity
- Strict exogeneity holds ($\epsilon_{it} \rightarrow Y_{it} \leftarrow \{\mathbf{X}_i, \mathbf{U}_i\}$)
- No arrows can be added without violating Assumptions 1 and 2
- Causal assumptions:
 - No unobserved time-varying confounders
 - Past outcomes do not directly affect current outcome
 - Past outcomes do not directly affect current treatment
 - Past treatments do not directly affect current outcome

Potential Outcomes Framework

- DAG ~> causal structure

Assumption 3 (No carryover effect)

Past treatments do not directly affect current outcome

$$Y_{it}(X_{i1}, X_{i2}, \ldots, X_{i,t-1}, X_{it}) = Y_{it}(X_{it})$$

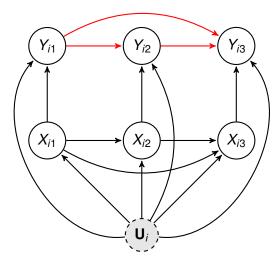
- What randomized experiment satisfies unit fixed effects model?
 - randomize X_{i1} given U_i
 - 2 randomize X_{i2} given X_{i1} and U_i
 - Indomize X_{i3} given X_{i2}, X_{i1}, and U_i
 - and so on

Assumption 4 (Sequential Ignorability with Unobservables)

$$\{ Y_{it}(1), Y_{it}(0) \}_{t=1}^{T} \quad \coprod \quad X_{i1} \mid \mathbf{U}_{i} \\ \vdots \\ \{ Y_{it}(1), Y_{it}(0) \}_{t=1}^{T} \quad \coprod \quad X_{it'} \mid X_{i1}, \dots, X_{i,t'-1}, \mathbf{U}_{i} \\ \vdots \\ \{ Y_{it}(1), Y_{it}(0) \}_{t=1}^{T} \quad \coprod \quad X_{iT} \mid X_{i1}, \dots, X_{i,T-1}, \mathbf{U}_{i}$$

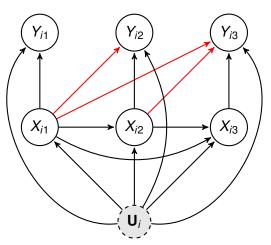
- "as-if random" assumption without conditioning on past outcomes
- Past outcomes cannot directly affect current treatment
- Says nothing about whether past outcomes can directly affect current outcome

Past Outcomes Directly Affect Current Outcome



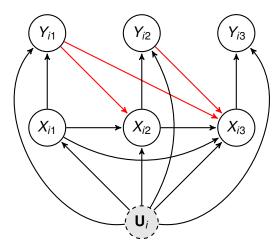
- Strict exogeneity still holds
- Past outcomes do not confound X_{it} → Y_{it} given U_i
- No need to adjust for past outcomes

Past Treatments Directly Affect Current Outcome



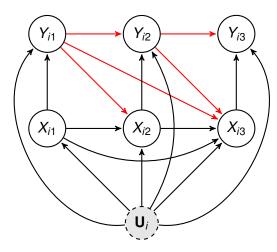
- Past treatments as confounders
- Need to adjust for past treatments
- Strict exogeneity holds given past treatments and U_i
- Impossible to adjust for an entire treatment history and U_i at the same time
- Adjust for a small number of past treatments ~→ often arbitrary

Past Outcomes Directly Affect Current Treatment



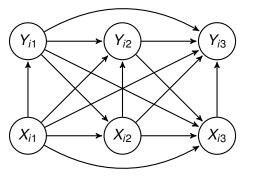
- Correlation between error term and future treatments
- Violation of strict exogeneity
- No adjustment is sufficient
- Together with the previous assumption
 ~> no feedback effect over time

Instrumental Variables Approach



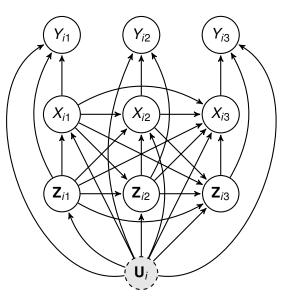
- Instruments: X_{i1} , X_{i2} , and Y_{i1}
- GMM: Arellano and Bond (1991)
- Exclusion restrictions
- Arbitrary choice of instruments
- Substantive justification rarely given

An Alternative Selection-on-Observables Approach



- Absence of unobserved time-invariant confounders U_i
- past treatments can directly affect current outcome
- past outcomes can directly affect current treatment
- Comparison across units within the same time rather than across different time periods within the same unit
- Marginal structural models ~> can identify the average effect of an entire treatment sequence
- Trade-off \rightsquigarrow no free lunch

Adjusting for Observed Time-varying Confounders



- past treatments cannot directly affect current outcome
- past outcomes cannot directly affect current treatment
- adjusting for Z_{it} does not relax these assumptions
- past outcomes cannot *indirectly* affect current treatment through Z_{it}

• Even if these assumptions are satisfied, the the unit fixed effects estimator is inconsistent for the ATE:

$$\hat{\beta}_{\mathsf{FE}} \xrightarrow{\rho} \frac{\mathbb{E}\left\{C_{i}\left(\frac{\sum_{t=1}^{T} X_{it} Y_{it}}{\sum_{t=1}^{T} X_{it}} - \frac{\sum_{t=1}^{T} (1-X_{it}) Y_{it}}{\sum_{t=1}^{T} 1-X_{it}}\right) S_{i}^{2}\right\}}{\mathbb{E}(C_{i} S_{i}^{2})} \neq \tau$$

where $S_i^2 = \sum_{t=1}^{T} (X_{it} - \overline{X}_i)^2 / (T - 1)$ is the unit-specific variance

- We show how to eliminate this bias using a general matching framework
- Equivalence between matching and weighted fixed effects estimators

Linear Regression with Unit and Time Fixed Effects

Model:

$$Y_{it} = \alpha_i + \gamma_t + \beta X_{it} + \epsilon_{it}$$

where γ_t flexibly adjusts for a vector of unobserved unit-invariant time effects \mathbf{V}_t , i.e., $\gamma_t = f(\mathbf{V}_t)$

• Estimator:

$$\hat{\beta}_{\mathsf{FE2}} = \arg\min_{\beta} \sum_{i=1}^{N} \sum_{t=1}^{T} \{ (Y_{it} - \overline{Y}_i - \overline{Y}_t + \overline{Y}) - \beta (X_{it} - \overline{X}_i - \overline{X}_t + \overline{X}) \}^2$$

where \overline{Y}_t and \overline{X}_t are time-specific means, and \overline{Y} and \overline{X} are overall means

Understanding the Two-way Fixed Effects Estimator

The two-way FE estimator combines three biased estimators!

- β_{FE} : bias due to time effects
- 2 β_{FEtime} : bias due to unit effects
- If β_{pool} : bias due to both time and unit effects

$$\hat{\beta}_{\mathsf{FE2}} = \frac{\omega_{\mathsf{FE}} \times \hat{\beta}_{\mathsf{FE}} + \omega_{\mathsf{FEtime}} \times \hat{\beta}_{\mathsf{FEtime}} - \omega_{\mathsf{pool}} \times \hat{\beta}_{\mathsf{pool}}}{w_{\mathsf{FE}} + w_{\mathsf{FEtime}} - w_{\mathsf{pool}}}$$

with sufficiently large N and T, the weights are given by,

 $\omega_{\mathsf{FE}} \approx \mathbb{E}(S_i^2) = \text{average unit-specific variance}$ $\omega_{\mathsf{FEtime}} \approx \mathbb{E}(S_t^2) = \text{average time-specific variance}$ $\omega_{\mathsf{pool}} \approx S^2 = \text{overall variance}$

We consider various matching estimators including difference-in-differences and synthetic control

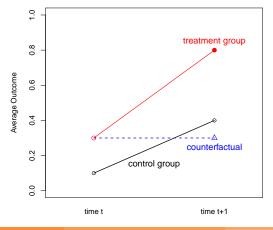
Imai (Princeton) and Kim (MIT)

Fixed Effects for Causal Inference

Before-and-After Design

- Accommodating various causal quantity of interest
- No time trend for the average potential outcomes:

$$\mathbb{E}(Y_{it}(x) - Y_{i,t-1}(x) \mid X_{it} \neq X_{i,t-1}) = 0 \text{ for } x = 0, 1$$



• This is a matching estimator with the following matched set:

$$\mathcal{M}(i,t) = \{(i',t'): i'=i,t'\in\{t-1,t+1\}, X_{i't'}=1-X_{it}\}$$

• It is also the first differencing estimator:

$$\hat{\beta}_{\text{FD}} = \arg \min_{\beta} \sum_{i=1}^{N} \sum_{t=2}^{T} \{ (Y_{it} - Y_{i,t-1}) - \beta (X_{it} - X_{i,t-1}) \}^2$$

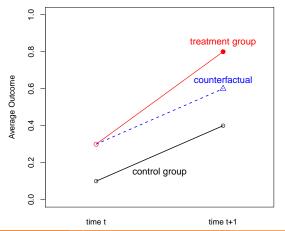
- "We emphasize that the model and the interpretation of β are exactly as in [the linear fixed effects model]. What differs is our method for estimating β" (Wooldridge; italics original).
- The identification assumptions is very different
- But, still requires the assumption that past outcomes do not affect current treatment (Regression towards the mean)

Difference-in-Differences Design

• Parallel trend assumption:

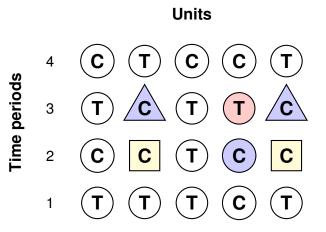
$$\mathbb{E}(Y_{it}(0) - Y_{i,t-1}(0) \mid X_{it} = 1, X_{i,t-1} = 0)$$

= $\mathbb{E}(Y_{it}(0) - Y_{i,t-1}(0) \mid X_{it} = X_{i,t-1} = 0)$

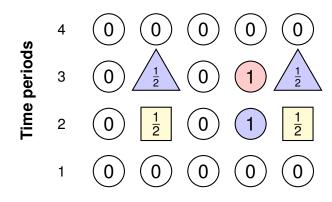


General DiD = Weighted Two-Way FE Effects

- 2×2 : equivalent to linear two-way fixed effects regression
- General setting: Multiple time periods, repeated treatments



Units



- Fast computation, standard error, specification test
- Still assumes that past outcomes don't affect current treatment
- Baseline outcome difference ~> caused by unobserved time-invariant confounders
- It should not reflect causal effect of baseline outcome on treatment assignment

Imai (Princeton) and Kim (MIT)

Fixed Effects for Causal Inference

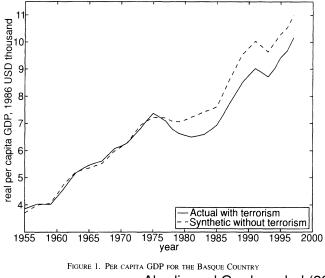
Synthetic Control Method (Abadie et al. 2010)

- One treated unit *i** receiving the treatment at time T
- Quantity of interest: $Y_{i^*T} Y_{i^*T}(0)$
- Create a synthetic control using past outcomes
- Weighted average: $\widehat{Y_{i^*T}(0)} = \sum_{i \neq i^*} \hat{w}_i Y_{iT}$
- Estimate weights to balance past outcomes and past time-varying covariates
- A motivating autoregressive model:

$$\begin{aligned} \mathbf{Y}_{iT}(\mathbf{0}) &= \rho_T \mathbf{Y}_{i,T-1}(\mathbf{0}) + \delta_T^\top \mathbf{Z}_{iT} + \epsilon_{iT} \\ \mathbf{Z}_{iT} &= \lambda_{T-1} \mathbf{Y}_{i,T-1}(\mathbf{0}) + \Delta_T \mathbf{Z}_{i,T-1} + \nu_{iT} \end{aligned}$$

- Past outcomes can affect current treatment
- No unobserved time-invariant confounders

Causal Effect of ETA's Terrorism



Abadie and Gardeazabal (2003, AER)

Imai (Princeton) and Kim (MIT)

Fixed Effects for Causal Inference

Sydney (January 10, 2017)

24/36

• The main motivating model:

$$\mathbf{Y}_{it}(\mathbf{0}) = \gamma_t + \delta_t^{\top} \mathbf{Z}_{it} + \xi^{\top} \mathbf{U}_i + \epsilon_{it}$$

- A generalization of the linear two-way fixed effects model
- How is it possible to adjust for unobserved time-invariant confounders by adjusting for past outcomes?
- The key assumption: there exist weights such that

$$\sum_{i \neq i^*} \mathbf{w}_i \mathbf{Z}_{it} = \mathbf{Z}_{i^*t} \text{ for all } t \leq T - 1 \quad \text{and} \quad \sum_{i \neq i^*} \mathbf{w}_i \mathbf{U}_i = \mathbf{U}_{i^*}$$

- In general, adjusting for observed confounders does not adjust for unobserved confounders
- The same tradeoff as before

Concluding Remarks

- When should we use linear fixed effects models?
- Key tradeoff:
 - \bullet unobserved time-invariant confounders \rightsquigarrow fixed effects
- Two key (under-appreciated) causal assumptions of fixed effects:
 past treatments do not directly affect current outcome
 past outcomes do not directly affect current treatment
- A new matching estimator:
 - Within-unit matching estimator ~> no linearity assumption
 - Various causal identification strategies can be incorporated including the before-and-after and difference-in-differences designs
 - Equivalent representation as a weighted linear fixed effects regression estimator
- R package wfe is available at CRAN

Send comments and suggestions to:

kimai@Princeton.Edu insong@mit.edu

More information about this and other research:

http://imai.princeton.edu http://web.mit.edu/insong/www