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@ Central role of propensity score in causal inference

e Adjusting for observed confounding in observational studies
e Generalizing experimental and instrumental variables estimates

@ Propensity score tautology

o sensitivity to model misspecification
e adhoc specification searches

@ Covariate Balancing Propensity Score (CBPS)

e Estimate the propensity score such that covariates are balanced
o Inverse probability weights for marginal structural models

@ Three cases:

@ Binary treatment
@ Time-varying binary treatments in longitudinal settings
© Multi-valued and continuous treatments



@ Notation:
e T; € {0,1}: binary treatment
e X;: pre-treatment covariates

@ Dual characteristics of propensity score:
@ Predicts treatment assignment:

m(Xi) = Pr(Ti=1]X)
@ Balances covariates (Rosenbaum and Rubin, 1983):
Ti 1L X | w(X;)

@ But, propensity score must be estimated (more on this later)



@ Matching

@ Subclassification

@ Weighting (Horvitz-Thompson):

1 Z Y,  (1-T)yY
n (X)) 1 =#7(X)

i=1

where weights are often normalized
@ Doubly-robust estimators (Robins et al.):

'17; Hﬁ“’x”)* w} - {ﬁ(o,x,-)+ (1= T)(Yi — (0, X)) H

#(Xi) 1 —7(X)

@ They have become standard tools for applied researchers



® Balancing conditon: £ { %y — {135} = 0

© -

/7
ATE weighted 7 ATE weighted
Control units _ * Treated units




@ Propensity score is unknown and must be estimated

e Dimension reduction is purely theoretical: must model T; given X;
e Diagnostics: covariate balance checking

@ In theory: ellipsoidal covariate distributions
— equal percent bias reduction

@ In practice: skewed covariates and adhoc specification searches

@ Propensity score methods are sensitive to model misspecification
@ Tautology: propensity score methods only work when they work



@ Simulation study: the deteriorating performance of propensity
score weighting methods when the model is misspecified

@ 4 covariates X;*: all are i.i.d. standard normal
@ Outcome model: linear model

@ Propensity score model: logistic model with linear predictors
@ Misspecification induced by measurement error:

X1 = exp(X;/2)

X2 = X5 /(1 + exp(X];) + 10)

Xia = (X;;X33/25 + 0.6)°

Xia = (Xj + Xj; + 20)2



@ Horvitz-Thompson (HT):

1 [ T (1-T)Y,
nz;{fr(xi) 1—fr(x,-)}

i=

@ Inverse-probability weighting with normalized weights (IPW):
HT with normalized weights (Hirano, Imbens, and Ridder)

© Weighted least squares regression (WLS): linear regression with
HT weights

© Doubly-robust least squares regression (DR): consistently
estimates the ATE if either the outcome or propensity score model
is correct (Robins, Rotnitzky, and Zhao)



Bias RMSE
Sample size  Estimator GLM True GLM True
(1) Both models correct
HT 0.33 1.19 12.61 23.93
IPW -0.13 -0.13 3.98 5.03

n =200 WLS -004 004 258 258
DR -004 -004 258 258
HT 001 —018 492 1047
1000 IPW 001 -005 175 222

WLS 0.01 0.01 1.14 1.14
DR 0.01 0.01 1.14 1.14

(2) Propensity score model correct
HT -0.05 -0.14 14.39 24.28
IPW  -0.13 -0.18 4.08 4.97

n =200 WLS 0.04 0.04 2.51 2.51
DR 0.04 0.04 2.51 2.51
HT -0.02 0.29 4.85 10.62
n = 1000 IPW 0.02 -0.03 1.75 2.27

WLS 0.04 0.04 1.14 1.14
DR 0.04 0.04 1.14 1.14




Bias RMSE
Sample size  Estimator GLM True GLM True
(3) Outcome model correct
HT 24.25 -0.18 194.58 23.24

n— 200 IPW 1.70 —0.26 9.75 4.93
WLS —2.29 0.41 4.03 3.31

DR —0.08 —0.10 2.67 2.58

HT 41.14 —-0.23 238.14 10.42

n — 1000 IPW 4.93 —0.02 11.44 2.21
WLS —2.94 0.20 3.29 1.47

DR 0.02 0.01 1.89 1.13

(4) Both models incorrect
HT 30.32 —0.38 266.30 23.86

n — 200 IPW 1.93 —0.09 10.50 5.08
WLS —2.13 0.55 3.87 3.29

DR —7.46 0.37 50.30 3.74

HT  101.47 0.01 2371.18 10.53

n = 1000 IPW 5.16 0.02 12.71 2.25
WLS —2.95 0.37 3.30 1.47

DR  —48.66 0.08 1370.91 1.81




@ Lalonde (1986; Amer. Econ. Rev.):

e Randomized evaluation of a job training program

o Replace experimental control group with another non-treated group
e Current Population Survey and Panel Study for Income Dynamics
e Many evaluation estimators didn’t recover experimental benchmark

@ Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):

e Apply propensity score matching
e Estimates are close to the experimental benchmark

@ Smith and Todd (2005):

o Dehejia & Wahba (DW)’s results are sensitive to model specification
e They are also sensitive to the selection of comparison sample



@ One of the most difficult scenarios identified by Smith and Todd:
o Lalonde experimental sample rather than DW sample
e Experimental estimate: $886 (s.e. = 488)
o PSID sample rather than CPS sample

@ Evaluation bias:

Conditional probability of being in the experimental sample
Comparison between experimental control group and PSID sample
“True” estimate = 0

Logistic regression for propensity score

One-to-one nearest neighbor matching with replacement

Propensity score model  Estimates

Linear —835
(886)

Quadratic -1620
(1003)

Smith and Todd (2005) —-1910
(1004)




@ |dea: Estimate propensity score such that covariates are balanced
@ Goal: Robust estimation of parametric propensity score model

@ Covariate balancing conditions:

X (1-T)X)|
E{m(xn 1—ma(x,~)}‘°

@ Over-identification via score conditions:

TR(X) (- T)m00|
E{ ) A= ma(X) } =0

@ Can be interpreted as another covariate balancing condition

@ Combine them with the Generalized Method of Moments



Bias RMSE
Estimator GLM CBPS1 CBPS2 True | GLM CBPS1 CBPS2 True
(1) Both models correct
HT 0.33 206 —-4.74 1.19| 1261 468 9.33 23.93
IPW  -0.13 0.05 -1.12 -0.13| 3.98 322 350 5.03

n=200 WIS 004 -004 —004 —004| 258 258 258 2.58
DR  -004 —004 —004 —004| 258 258 258 258
HT 001 044 —150 —018| 492 1.76 4.18 1047
1000 'PW 001 003 082 005 175 144 160 222

WLS 0.01  0.01 0.01 0.01| 114 114 114 1.14
DR 0.01  0.01 0.01 0.01| 114 114 114 114
(2) Propensity score model correct
HT -0.05 199 -494 -0.14| 1439 457 939 24.28
IPW  -0.13 0.02 -1.13 -0.18| 4.08 3.22 355 497

n =200 WLS 0.04 004 004 004 251 251 251 251
DR 0.04 004 004 004 251 251 252 251
HT -002 044 -167 029| 485 177 422 10.62
n = 1000 IPW 0.02 005 -031 -0.03| 175 145 161 227

WLS 0.04 004 004 004 114 114 114 114
DR 0.04 004 004 004 114 114 114 114




Bias RMSE
Estimator GLM CBPS1 CBPS2 True GLM CBPS1 CBPS2 True
(3) Outcome model correct
HT 24.25 1.09 —5.42 —0.18| 194.58 5.04 10.71 23.24

n =200 IPW 1.70 —-1.37 —-2.84 -0.26 9.75 342 474 493
WLS —229 -237 -219 041 4.03 406 396 3.31
DR —0.08 -0.10 —0.10 —0.10 2.67 258 258 258
HT 4114 -2.02 2.08 —-0.23| 238.14 297 6.65 10.42
n = 1000 IPW 493 -1.39 —-0.82 —0.02| 11.44 201 226 221

WLS —-294 -299 -295 0.20 3.29 3.37 3.33 147
DR 0.02 0.01 0.01 0.01 1.89 113 113 1.13
(4) Both models incorrect
HT 30.32 1.27 —-5.31 —0.38| 266.30 5.20 10.62 23.86

n— 200 IPW 193 —-1.26 —-2.77 —0.09| 10.50 3.37 4.67 5.08
WLS —213 —-220 —2.04 0.55 3.87 391 3.81 329
DR —746 —-259 -213 0.37| 50.30 427 399 3.74
HT 10147 —-2.05 190 0.01|2371.18 3.02 6.75 10.53
n = 1000 IPW 516 -1.44 -092 0.02| 1271 206 239 225

WLS —295 -3.01 —298 0.19 3.30 3.40 3.36 147
DR —4866 —-3.59 —3.79 0.08]/1370.91 402 425 181




@ Setup:

units: i =1,2,...,n

time periods: j=1,2,...,J

fixed J with n —

time-varying binary treatments: Tj; € {0,1}

treatment history up to time j: T;; = {Ti1, Tiz, ..., Tjj}
time-varying confounders: Xj

confounder history up to time j: Xj = {Xi1, Xi2, ..., Xj}
outcome measured at time J: Y;

potential outcomes: Y;(1,)

@ Assumptions:

Sequential ignorability
Yit) LTy | Tijor=t4,Xj=X

where t; = (ti_1,t,...,t))
Common support

0 < Pr(Tj=1|Tij—1,X;) < 1



@ Weighting each observation via the inverse probability of its
observed treatment sequence (Robins 1999)

@ Inverse-Probability-of-Treatment Weights:

o
' P(Tu| Xi) 25 P(Ty | Tijo1. X)

@ Stabilized weights:



@ Consistent estimation of the marginal mean of potential outcome:

T, = - .
- STy =1wY 2 E(Yi(1))
i=1
@ In practice, researchers fit a weighted regression of ¥; on a
function of T;; with regression weight w;
@ Adjusting for X, leads to post-treatment bias
@ MSMs estimate the average effect of any treatment sequence

@ Problem: MSMs are sensitive to the misspecification of treatment
assignment model (typically a series of logistic regressions)

@ The effect of misspecification can propagate across time periods
@ Solution: estimate MSM weights so that covariates are balanced



@ time 1 covariates Xji: 3 equality constraints
E(Xi1) = E[1{Tih = t, Tio = 2} w; Xit]
@ time 2 covariates Xj»: 2 equality constraints
E(Xi2(t1)) = E[1{Tix = ts, Tz = t2}w; Xia(t1)]
fort, = 0,1
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Treatment history: (t, &)

Time period (0,0) (0,1) (1,0) (1,1) Moment condition
+ o+ - - E{(-1)""wXj1} =0
time 1 + — + - ]E{(—1)T"2WiXi1} -0
+ - - 4+ E{(-1)"*+Tew; X1} =0
ime 2 + -+ - E{(—Qszw, Xz} =0
+ — — + E{(—1)"*+Tew; X} =0




@ Independence across balancing conditions:

A = argmin vec(G) W~ "vec(G)
Beo

@ Sample moment conditions G:

12 (—1)Ti1WI-Xi1 (1)’2W1X1 (_1)7';1+T,-2WI,XI.1
N3 0 (—1)Tew X (—1)T+Tew; X

@ Covariance matrix W:
1 (_1)Ti1+Tr2 (_1)712
1< T
S N N N T B R
3 (—1)7e (—1)7n 1 211 i2Aj2

=



Tis = :

Te = CT,—o (1,10
Xi2(1)
- To o CTe=' Lv@a.01)
W =0 )(/3(1,0)\.Y(1 0,0)
X Tis=0 no
i1
| Te=1 . v0,1,1)
P A Xg(0,1) = A
7S T~ T.—o " (0,10
Xi2(0)
\ Ti3:1 )/,(0,0,1)

2=0 Xz(0,0) —

—_— .,V
7;,3 — o )/1(07070)

Generalization of the proposed method to J periods is in the paper




| Treatment History Hadamard Matrix: (t;, b, &) |
Design matrix1(0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,1)1 Time
|

T T Tz | ho hy he ha  his hs hs  hizg '11 2 3
- - - F + + + + * + + xxx
e N M
-+ -+ + - -+ o+ - - W /X
e
- - + 4+ 4+ 4+ o+ - - - -y
T S T S A S
-+ + 1+ + - - - - + + W v/
e e T e T

@ The mod 2 discrete Fourier transform:
E{(-1)"Tew;X;} =0 (6th row)

@ Connection to the fractional factorial design
e “Fractional” = past treatment history
e “Factorial” = future potential treatments



@ The same setup as before:

B = argmin vec(G)TW~'vec(G)
Beo

where
n
G = %Z(M,-T@@W,-X,-)R
i=1
n
W= ISR (MM e wPXXT | X,)
i=1

@ M;is the (27 — 1)th row of model matrix based on the design
matrix in Yates order
@ For each time period j, define the selection matrix R

R =R Ry] where R, = 0p/-12j-1 02/*1><(2J_2j71)
1 LR J -I 0(2J—2f—1)><2j—1 I2J_2j—1



@ When the number of time periods J increases, the dimensionality
of optimal W, which is equal to (27 — 1) x JK, exponentially
increases

@ Low-rank approximation:

. 1 -~ o
w = EZI@X;X,T = leX'X

=1

where )~(, = wX;
@ Then,
B = argmin vec(G) {I® X X} "vec(G)
5e0
= argmin trace{R"MTX(X"X)"'X MR}
Beo



@ 3 time periods
@ Treatment assignment process:

@ Outcome: ¥; =250 — 1030, T+ >0 ;6 Xj +¢;
@ Functional form misspecification by nonlinear transformation of Xj;
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@ 3 time periods
@ Treatment assignment process:

@ The same outcome model
@ Incorrect lag: only adjusts for previous lag but not all lags
@ In addition, the same functional form misspecification of Xj

Sweden (March 9, 2015) 28/48
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@ Electoral impact of negative advertisements (Blackwell, 2013)
@ For each of 114 races, 5 weeks leading up to the election

@ Outcome: candidates’ voteshare
@ Treatment: negative (T; = 1) or positive (Tj; = 0) campaign
@ Time-varying covariates: Democratic share of the polls, proportion

of voters undecided, campaign length, and the lagged and twice
lagged treatment variables for each week

@ Time-invariant covariates: baseline Democratic voteshare,
baseline proportion undecided, and indicators for election year,
incumbency status, and type of office

@ Original study: pooled logistic regression with a linear time trend
@ We compare period-by-period GLM with CBPS
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GLM CBPS CBPS GLM CBPS CBPS

(approx.) (approx.)

(Intercept) 55.69* 57.15* 57.94* 55.41* 57.06* 57.73*

(4.62) (1.84) (2.12) (3.09) (1.68) (1.88)
Negative 2.97 5.82 3.15
(time 1) (4.55) (5.30) (3.76)
Negative 3.53 2.71 5.02
(time 2) (9.71) (9.26) (8.55)
Negative —-2.77 -3.89 -3.63
(time 3) (12.57) (10.94) (11.46)
Negative —-8.28 —9.75 —10.39
(time 4) (10.29) (7.79) (8.79)
Negative —153 —1.95* —2.13*
(time 5) (0.97) (0.96) (0.98)

Negative —-1.14 —-1.35* —1.51*

(cumulative) (0.68) (0.39) (0.43)

R? 0.04 0.14 0.13 0.02 0.10 0.10

F statistics 0.95 3.39 3.32 2.84 12.29 12.23
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@ Effect of education on political participation
e Education is assumed to play a key role in political participation
e T;: 3 education levels (graduated from college, attended college but
not graduated, no college)
e Original analysis ~~ dichotomization (some college vs. no college)
e Propensity score matching
o Critics employ different matching methods

© Effect of advertisements on campaign contributions

e Do TV advertisements increase campaign contributions?
T;: Number of advertisements aired in each zip code
ranges from 0 to 22,379 advertisements
Original analysis ~~ dichotomization (over 1000 vs. less than 1000)
Propensity score matching followed by linear regression with an
original treatment variable
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@ Consider a multi-valued treatment: 7 = {0,1,...,J — 1}
@ Standard approach: MLE with multinomial logistic regression
exp (X' 5)
J T
1+ exp (T X5 )

(X)) = Pr(Ti=j| X) =

where 3y = 0 and Z]':_J (X)) =1

@ Covariate balancing conditions with inverse-probability weighting:

UT=0}X) _ . (UT=13x) _  _  (HTi=J-1}X
E( (%) > E( (%) ) E( 00 )

which equals E(X))
@ Idea: estimate 7/(X;) to optimize the balancing conditions



@ Consider a 3 treatment value case as in our motivating example
@ Sample balance conditions with orthogonalized contrasts:

oMTi=0} _ WTi=1} _ 1{Ti=2}
|

) w0 w0
95(T, X) NZ ( = =2y
A0 B0

@ Generalized method of moments (GMM) estimation:

Bepes = arg/;mn 95(T. X) Zp(T. X) ™" 95(T, X)

where ¥ 3(T, X) is the covariance of sample moments



@ Balancing the first derivative across treatment values:

1 N

stﬂ(Ti,Xi)

i=1

HT=1} _ MHT=0} ) & 1y HT=2)  YT=0}\ & 2.y
s A e ) oK) T SEmg T ey ) o ma(Xi)
TN <4 1HT=1}  14T=0}\ o _1 1{T=2) 1T=0}\ o 2,y

=1 ()  9(X) ) 9B ms(Xi) + 2(6)  75) a8 "5 (X0)

A

@ Can be added to CBPS as over-identifying restrictions
@ Generalizable to more treatment values



@ Standardize X; and T; such that
o E(X")=E(T")=E(X'T")=0
° V(X)) =V(Tj) =1

@ The stabilized weights:

K1)
YT HTTXD

@ Covariate balancing condition:

* VK fT* * * * * *
BT x) = [{ [ e TR 1 X0 ) X o)

E(T/)E(X?) = 0.

@ Again, estimate the generalized propensity score such that
covariate balance is optimized



@ Standard approach (e.g., Robins et al. 2000):
« 4«  indep. «
Tr X "N NGB, o)
T,'* 1’1\51 N(O, 0_2)

where further transformation of T; can make these distributional
assumptions more credible

@ Sample covariate balancing conditions:

_ N %(TI* _X/*Tﬁ)x,*
arx) = (o7) - a| o E xR
i=1 exp I:# {_2)(I*Tﬁ+ ()(I*Tﬁ)g}} TI*)(I*

@ GMM estimation: covariance matrix can be analytically calculated



@ CBPS achieves better covariate balance
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@ Covariate balancing propensity score:

@ optimizes covariate balance under the GMM/EL framework
@ is robust to model misspecification
© improves inverse probability weighting methods

@ Ongoing work:
@ Nonparametric estimation via empirical likelihood
@ Generalizing experimental and instrumental variable estimates
© Confounder selection, moment selection

@ Open-source software, CEBPS: R Package for Covariate
Balancing Propensity Score, is available at CRAN



@ “Covariate Balancing Propensity Score” J. of the Royal Statistical
Society, Series B (Methodological). (2014) Vol. 76, No. 1
(January), pp. 243—-263.

© “Robust Estimation of Inverse Probability Weights for Marginal
Structural Models” Journal of the American Statistical Association,
Forthcoming

© “Covariate Balancing Propensity Score for General Treatment

Regimes” Working paper available at
http://imai.princeton.edu

Send comments and suggestions to kimai@Princeton.Edu
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