Covariate Balancing Propensity Score

Kosuke Imai

Princeton University

Joint work with Marc Ratkovic

November 3, 2012 Experiments in Governance and Politics Conference

- Causal inference is a central goal of scientific research
- Randomized experiments are not always possible
 ⇒ Causal inference in observational studies
- Randomized experiments often lack external validity
 Need to generalize experimental results
- Instrumental variables estimates are only applicable to compliers → Need to generalize to non-compliers
- Common goal: statistically adjust for confounding factors

Overview of the Talk

Review: Propensity score

- conditional probability of treatment assignment
- propensity score is a balancing score
- matching and weighting methods

Problem: Propensity score tautology

- sensitivity to model misspecification
- adhoc specification searches

Solution: Covariate balancing propensity score

- Estimate propensity score so that covariate balance is optimized
- Evidence: Reanalysis of two prominent critiques
 - Improved performance of propensity score weighting and matching
- Extension: Generalizing experimental estimates

Propensity Score

Notation:

- $T_i \in \{0, 1\}$: binary treatment
- X_i: pre-treatment covariates
- $(Y_i(1), Y_i(0))$: potential outcomes
- $Y_i = Y_i(T_i)$: observed outcomes
- Dual characteristics of propensity score (without assumption):
 Predicts treatment assignment:

$$\pi(X_i) = \Pr(T_i = 1 \mid X_i)$$

Balances covariates:

$$T_i \perp \!\!\!\perp X_i \mid \pi(X_i)$$

• Assumptions:

$$0 < \pi(X_i) < 1$$

Our Control Control

$$\{Y_i(1), Y_i(0)\} \perp T_i \mid X_i$$

• The main result: Propensity score as a dimension reduction tool

$$\{Y_i(1), Y_i(0)\} \perp T_i \mid \pi(X_i)$$

- Propensity score is unknown and must be estimated
 - Dimension reduction is purely theoretical: must model *T_i* given *X_i*
 - Diagnostics: covariate balance checking
- In theory: ellipsoidal covariate distributions ⇒ equal percent bias reduction
- In practice: skewed covariates and adhoc specification searches
- Model misspecification is always possible
- Propensity score methods can be sensitive to misspecification
- Tautology: propensity score methods only work when they work

Covariate Balancing Propensity Score (CBPS)

- Idea: take advantage of propensity score tautology
- Recall the dual characteristics of propensity score
 - Predicts treatment assignment
 - Balances covariates
- Implied moment conditions:

Score condition: sets the first derivative of the log-likelihood to zero

$$\mathbb{E}\left\{\frac{T_i\pi'_{\beta}(X_i)}{\pi_{\beta}(X_i)}-\frac{(1-T_i)\pi'_{\beta}(X_i)}{1-\pi_{\beta}(X_i)}\right\} = 0$$

- Balancing condition: sets weighted difference in means between treated an untreated observations to zero
- Score condition is a balancing condition
- CBPS uses the same propensity score model (e.g., logistic regression) but estimates it to best satisfy the above conditions

Weighting Control Group to Balance Covariates

• Balancing condition:
$$\mathbb{E}\left\{T_iX_i - \frac{\pi_\beta(X_i)(1-T_i)X_i}{1-\pi_\beta(X_i)}\right\} = 0$$

Imai and Ratkovic (Princeton)

Weighting Control Group to Balance Covariates

• Balancing condition:
$$\mathbb{E}\left\{T_iX_i - \frac{\pi_\beta(X_i)(1-T_i)X_i}{1-\pi_\beta(X_i)}\right\} = 0$$

Imai and Ratkovic (Princeton)

Weighting Both Groups to Balance Covariates

• Balancing condition:
$$\mathbb{E}\left\{\frac{T_iX_i}{\pi_{\beta}(X_i)} - \frac{(1-T_i)X_i}{1-\pi_{\beta}(X_i)}\right\} = 0$$

Imai and Ratkovic (Princeton)

Generalized Method of Moments (GMM) Estimation

Over-identification: more moment conditions than parameters
GMM (Hansen 1982):

$$\hat{eta}_{\mathrm{GMM}} = \operatorname*{argmin}_{eta \in \Theta} ar{g}_eta(T,X)^ op \Sigma_eta(T,X)^{-1}ar{g}_eta(T,X)$$

where

$$\bar{g}_{\beta}(T,X) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{\left(\begin{array}{c} \text{score condition} \\ \text{balancing condition} \end{array}\right)}_{g_{\beta}(T_i,X_i)}$$

• "Continuous updating" GMM estimator with the following Σ :

$$\Sigma_{\beta}(T,X) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}(g_{\beta}(T_i,X_i)g_{\beta}(T_i,X_i)^{\top} \mid X_i)$$

Newton-type optimization algorithm with MLE as starting values

- CBPS is overidentified
- Specification test based on Hansen's J-statistic:

$$J = n \, ar{g}_eta(T,X)^ op \Sigma_eta(T,X)^{-1} ar{g}_eta(T,X) \ \sim \ \chi_k^2$$

where k is the number of moment conditions

• Can also be used to conduct "optimal" 1-to-N matching

Kang and Schafer (2007, Statistical Science)

- Simulation study: the deteriorating performance of propensity score weighting methods when the model is misspecified
- Can the CBPS save propensity score weighting methods?
- 4 covariates X_i^{*}: all are *i.i.d.* standard normal
- Outcome model: linear model
- Propensity score model: logistic model with linear predictors
- Nonlinear misspecification induced by measurement error:

•
$$X_{i1} = \exp(X_{i1}^*/2)$$

• $X_{i2} = X_{i2}^*/(1 + \exp(X_{1i}^*) + 10)$
• $X_{i3} = (X_{i1}^*X_{i3}^*/25 + 0.6)^3$
• $X_{i4} = (X_{i1}^* + X_{i4}^* + 20)^2$

Weighting Estimators Evaluated

Horvitz-Thompson (HT):

$$\frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{T_i Y_i}{\hat{\pi}(X_i)} - \frac{(1-T_i) Y_i}{1-\hat{\pi}(X_i)} \right\}$$

- Inverse-probability weighting with normalized weights (IPW): Same as HT but with normalized weights
- Weighted least squares regression (WLS): linear regression with HT weights
- Doubly-robust least squares regression (DR): consistently estimates the ATE if *either* the outcome or propensity score model is correct

14/29

Weighting Estimators Do Fine If the Model is Correct

		Bi	Bias		SE			
Sample size	Estimator	GLM	True	GLM	True			
(1) Both mode	els correct							
	HT	-0.01	0.68	13.07	23.72			
n = 200	IPW	-0.09	-0.11	4.01	4.90			
11 = 200	WLS	0.03	0.03	2.57	2.57			
	DR	0.03	0.03	2.57	2.57			
	HT	-0.03	0.29	4.86	10.52			
n = 1000	IPW	-0.02	-0.01	1.73	2.25			
n = 1000	WLS	-0.00	-0.00	1.14	1.14			
	DR -0.00 -0.00 1	1.14	1.14					
(2) Propensity	Propensity score model correct							
	HT	-0.32	-0.17	12.49	23.49			
n = 200	IPW	-0.27	-0.35	3.94	4.90			
11 = 200	WLS	-0.07	-0.07	2.59	2.59			
	DR	-0.07	-0.07	2.59	2.59			
	HT	0.03	0.01	4.93	10.62			
n = 1000	IPW	-0.02	-0.04	1.76	2.26			
<i>n</i> = 1000	WLS	-0.01	-0.01	1.14	1.14			
	DR	-0.01	-0.01	1.14	1.14			

Imai and Ratkovic (Princeton)

Weighting Estimators are Sensitive to Misspecification

		Bia	as	RMSE		
Sample size	Estimator	GLM	True	GLM	True	
(3) Outcome	model corre	ct				
	HT	24.72	0.25	141.09	23.76	
n 200	IPW	2.69	-0.17	10.51	4.89	
11 = 200	WLS	-1.95	0.49	3.86	3.31	
	DR	0.01	0.01	2.62	2.56	
	HT	69.13	-0.10	1329.31	10.36	
n = 1000	IPW	6.20	-0.04	13.74	2.23	
n = 1000	WLS	-2.67	0.18	3.08	1.48	
	DR	0.05	0.02	4.86	1.15	
(4) Both mod	els incorrect					
	HT	25.88	-0.14	186.53	23.65	
n 200	IPW	2.58	-0.24	10.32	4.92	
11 = 200	WLS	-1.96	0.47	3.86	3.31	
	DR	-5.69	0.33	39.54	3.69	
	HT	60.60	0.05	1387.53	10.52	
n 1000	IPW	6.18	-0.04	13.40	2.24	
n = 1000	WLS	-2.68	0.17	3.09	1.47	
	DR	-20.20	0.07	615.05	1.75	

Imai and Ratkovic (Princeton)

Revisiting Kang and Schafer (2007)

			Bia	as			RMSE			
	Estimator	GLM	Balance	CBPS	True	GLM	Balance	CBPS	True	
(1) Both r	nodels cor	rect								
	HT	-0.01	2.02	0.73	0.68	13.07	4.65	4.04	23.72	
n — 200	IPW	-0.09	0.05	-0.09	-0.11	4.01	3.23	3.23	4.90	
11 - 200	WLS	0.03	0.03	0.03	0.03	2.57	2.57	2.57	2.57	
	DR	0.03	0.03	0.03	0.03	2.57	2.57	2.57	2.57	
	HT	-0.03	0.39	0.15	0.29	4.86	1.77	1.80	10.52	
n 1000	IPW	-0.02	0.00	-0.03	-0.01	1.73	1.44	1.45	2.25	
<i>II</i> = 1000	WLS	-0.00	-0.00	-0.00	-0.00	1.14	1.14	1.14	1.14	
	DR	-0.00	-0.00	-0.00	-0.00	1.14	1.14	1.14	1.14	
(2) Prope	nsity score	e model	correct							
	HT	-0.32	1.88	0.55	-0.17	12.49	4.67	4.06	23.49	
n — 200	IPW	-0.27	-0.12	-0.26	-0.35	3.94	3.26	3.27	4.90	
11 - 200	WLS	-0.07	-0.07	-0.07	-0.07	2.59	2.59	2.59	2.59	
	DR	-0.07	-0.07	-0.07	-0.07	2.59	2.59	2.59	2.59	
	HT	0.03	0.38	0.15	0.01	4.93	1.75	1.79	10.62	
n 1000	IPW	-0.02	-0.00	-0.03	-0.04	1.76	1.45	1.46	2.26	
11 - 1000	WLS	-0.01	-0.01	-0.01	-0.01	1.14	1.14	1.14	1.14	
	DR	-0.01	-0.01	-0.01	-0.01	1.14	1.14	1.14	1.14	

CBPS Makes Weighting Methods Work Better

			Bia	s					
	Estimator	GLM	Balance	CBPS	True	GLM	Balance	CBPS	True
(3) Outco	ome model	correct							
	HT	24.72	0.33	-0.47	0.25	141.09	4.55	3.70	23.76
n 200	IPW	2.69	-0.71	-0.80	-0.17	10.51	3.50	3.51	4.89
11 = 200	WLS	-1.95	-2.01	-1.99	0.49	3.86	3.88	3.88	3.31
	DR	0.01	0.01	0.01	0.01	2.62	2.56	2.56	2.56
	HT	69.13	-2.14	-1.55	-0.10	1329.31	3.12	2.63	10.36
n 1000	IPW	6.20	-0.87	-0.73	-0.04	13.74	1.87	1.80	2.23
<i>II</i> = 1000	WLS	-2.67	-2.68	-2.69	0.18	3.08	3.13	3.14	1.48
	DR	0.05	0.02	0.02	0.02	4.86	1.16	1.16	1.15
(4) Both	models inc	correct							
	HT	25.88	0.39	-0.41	-0.14	186.53	4.64	3.69	23.65
n — 200	IPW	2.58	-0.71	-0.80	-0.24	10.32	3.49	3.50	4.92
11 - 200	WLS	-1.96	-2.01	-2.00	0.47	3.86	3.88	3.88	3.31
	DR	-5.69	-2.20	-2.18	0.33	39.54	4.22	4.23	3.69
	HT	60.60	-2.16	-1.56	0.05	1387.53	3.11	2.62	10.52
n 1000	IPW	6.18	-0.87	-0.72	-0.04	13.40	1.86	1.80	2.24
<i>II</i> = 1000	WLS	-2.68	-2.69	-2.70	0.17	3.09	3.14	3.15	1.47
	DR	-20.20	-2.89	-2.94	0.07	615.05	3.47	3.53	1.75

CBPS Sacrifices Likelihood for Better Balance

- LaLonde (1986; Amer. Econ. Rev.):
 - Randomized evaluation of a job training program
 - Replace experimental control group with another non-treated group
 - Current Population Survey and Panel Study for Income Dynamics
 - Many evaluation estimators didn't recover experimental benchmark
- Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):
 - Apply propensity score matching
 - Estimates are close to the experimental benchmark
- Smith and Todd (2005):
 - LaLonde experimental sample rather than DW sample
 - Dehejia & Wahba (DW)'s results are sensitive to model specification
 - They are also sensitive to the selection of comparison sample

Observed Data

Experimental (LaLonde) Sample

Experimental (LaLonde) Sample

Observational (PSID) Sample

Evaluation Bias

Experimental (LaLonde) Sample

Matching Estimator

Imai and Ratkovic (Princeton)

Covariate Balancing Propensity Score

EGAP8 (Nov 3, 2012) 24 / 29

Evaluation Bias

- Propensity score:
 - Conditional probability of being in the experimental sample
 - Logistic regression for propensity score
- "True" estimate = 0
- Nearest neighbor matching with replacement

• CBPS reduces bias:

	1-1	to-1 Match	ing	Optimal 1-to-N Matching			
Specification	GLM	Balance	CBPS	GLM	Balance	CBPS	
Linear	-835	-568	-302	-1022	-265	-67	
	(886)	(898)	(869)	(499)	(492)	(487)	
Quadratic	-1570	-950	-1036	-1209	-950	-480	
	(1003)	(882)	(831)	(558)	(617)	(512)	
Smith & Todd (2005)	-1859	-1074	-1298	-1810	-1164	-419	
	(1004)	(860)	(800)	(500)	(485)	(464)	

Comparison with the Experimental Benchmark

- LaLonde, Dehejia and Wahba, and others did this comparison
- Experimental estimate: \$866 (s.e. = 488)
- LaLonde+PSID pose a challenge:
 - GenMatch: -\$412 (s.e. = 553)
 - CEM: -\$29 (s.e. = 452)
 - ebal: -\$203 (s.e. = 256)
- CBPS gives estimates closer to experimental benchmark:

	1-1	to-1 Match	ing	Optimal 1-to-N Matching			
Model specification	GLM	Balance	CBPS	GLM	Balance	CBPS	
Linear	-835	-568	-302	-430	507	123	
	(1374)	(1811)	(1849)	(749)	(822)	(799)	
Quadratic	-919	-379	-379	-419	193	439	
	(1245)	(1219)	(1140)	(558)	(617)	(512)	
Smith & Todd (2005)	-811	-507	-131	-811	-487	289	
	(1225)	(1189)	(1058)	(1225)	(676)	(673)	

- Propensity score methods are widely applicable
- Thus, CBPS is also widely applicable
- Extensions in progress:
 - Non-binary treatment regimes
 - 2 Causal inference with longitudinal data
 - Generalizing experimental estimates
 - Generalizing instrumental variable estimates
- In many of these situations, balance checking is difficult

Generalizing Experimental Estimates

- Lack of external validity for experimental estimates
- Target population *P*
- Experimental sample: $S_i = 1$ with $i = 1, 2, ..., N_e$
- Non-experimental sample: $S_i = 0$ with $i = N_e + 1, ..., N$
- Sampling on observables: $\{Y_i(1), Y_i(0)\} \perp S_i \mid X_i$
- Propensity score: $\pi_{\beta}(X_i) = \Pr(S_i \mid X_i)$
- Score equation: logistic likelihood
- Balancing between experimental and non-experimental sample:

$$\mathbb{E}\left\{\frac{S_i\widetilde{X}_i}{\pi_{\beta}(X_i)}-\frac{(1-S_i)\widetilde{X}_i}{1-\pi_{\beta}(X_i)}\right\} = 0$$

Can also balance weighted treatment and control groups

• Covariate balancing propensity score:

- simultaneously optimizes prediction of treatment assignment and covariate balance under the GMM framework
- is robust to model misspecification
- improves propensity score weighting and matching methods
- Can be extended to various situations
- Open-source software, CBPS: R Package for Covariate Balancing Propensity Score, is available at CRAN