Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies

Kosuke Imai

Princeton University

September 8, 2011 SREE-Fall 2011 Conference

Project Reference

My talk is based on the collaborative project with L. Keele (Penn State), D. Tingley (Harvard), and T. Yamamoto (MIT)

- "Unpacking the Black Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies." American Political Science Review
- "Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects." Statistical Science
- "A General Approach to Causal Mediation Analysis." Psychological Methods
- "Experimental Designs for Identifying Causal Mechanisms."
- "Causal Mediation Analysis Using R." Advances in Social Science Research Using R

All methods can be implemented by our R package mediation

Identification of Causal Mechanisms

- Causal inference is a central goal of scientific research
- Scientists care about causal mechanisms, not just about causal effects
- Randomized experiments often only determine whether the treatment causes changes in the outcome
- Not how and why the treatment affects the outcome
- Common criticism of experiments and statistics:

black box view of causality

 Question: How can we learn about causal mechanisms from experimental and observational studies?

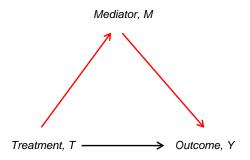
Goals of the Talk

Present a general framework for statistical design and analysis of causal mechanisms

- Show that the sequential ignorability assumption is required to identify mechanisms even in experiments
- Offer a flexible estimation strategy under this assumption
- Propose a sensitivity analysis to probe this assumption
- 4 Illustrate how to use the R package mediation
- Propose new experimental designs that do not rely on sequential ignorability
- Cover both experiments and observational studies under the same principle

What Is a Causal Mechanism?

- Mechanisms as alternative causal pathways
- Cochran (1957)'s example: soil fumigants increase farm crops by reducing eel-worms
- Causal mediation analysis



- Quantities of interest: Direct and indirect effects
- Fast growing methodological literature

Potential Outcomes Framework

Framework: Potential outcomes model of causal inference

- Binary treatment: $T_i \in \{0, 1\}$
- Mediator: $M_i \in \mathcal{M}$
- Outcome: $Y_i \in \mathcal{Y}$
- Observed pre-treatment covariates: $X_i \in \mathcal{X}$
- Potential mediators: $M_i(t)$, where $M_i = M_i(T_i)$ observed
- Potential outcomes: $Y_i(t, m)$, where $Y_i = Y_i(T_i, M_i(T_i))$ observed
- In a standard experiment, only one potential outcome can be observed for each i

Causal Mediation Effects

Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

Causal mediation (Indirect) effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Causal effect of the change in M_i on Y_i that would be induced by treatment
- Change the mediator from $M_i(0)$ to $M_i(1)$ while holding the treatment constant at t
- Represents the mechanism through M_i

Total Effect = Indirect Effect + Direct Effect

Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Causal effect of T_i on Y_i , holding mediator constant at its potential value that would realize when $T_i = t$
- Change the treatment from 0 to 1 while holding the mediator constant at M_i(t)
- Represents all mechanisms other than through M_i
- Total effect = mediation (indirect) effect + direct effect:

$$\tau_i = \delta_i(t) + \zeta_i(1-t) = \frac{1}{2} \{\delta_i(0) + \delta_i(1) + \zeta_i(0) + \zeta_i(1)\}$$

Mechanisms, Manipulations, and Interactions

Mechanisms

- Indirect effects: $\delta_i(t) \equiv Y_i(t, M_i(1)) Y_i(t, M_i(0))$
- Counterfactuals about treatment-induced mediator values

Manipulations

- Controlled direct effects: $\xi_i(t, m, m') \equiv Y_i(t, m) Y_i(t, m')$
- Causal effect of directly manipulating the mediator under T_i = t

Interactions

- Interaction effects: $\xi(1, m, m') \xi(0, m, m') \neq 0$
- Doesn't imply the existence of a mechanism

What Does the Observed Data Tell Us?

Quantity of Interest: Average causal mediation effects

$$\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

- Average direct effects $(\bar{\zeta}(t))$ are defined similarly
- Problem: $Y_i(t, M_i(t))$ is observed but $Y_i(t, M_i(t'))$ can never be observed
- We have an identification problem
- ⇒ Need additional assumptions to make progress

Identification under Sequential Ignorability

Proposed identification assumption: Sequential Ignorability

$$\{Y_i(t',m), M_i(t)\} \perp T_i \mid X_i = x,$$
 (1)

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x$$
 (2)

- (1) is guaranteed to hold in a standard experiment
- \bullet (2) does **not** hold unless X_i includes all confounders

Under sequential ignorability, both ACME and average direct effects are nonparametrically identified

(= consistently estimated from observed data)

Nonparametric Identification

Theorem: Under SI, both ACME and average direct effects are given by,

• ACME $\bar{\delta}(t)$

$$\int\int\mathbb{E}(Y_i\mid M_i,T_i=t,X_i)\left\{dP(M_i\mid T_i=1,X_i)-dP(M_i\mid T_i=0,X_i)\right\}dP(X_i)$$

• Average direct effects $\bar{\zeta}(t)$

$$\int \int \{\mathbb{E}(Y_i \mid M_i, T_i = 1, X_i) - \mathbb{E}(Y_i \mid M_i, T_i = 0, X_i)\} dP(M_i \mid T_i = t, X_i) dP(X_i)$$

Traditional Estimation Method

Linear structural equation model (LSEM):

$$M_i = \alpha_2 + \beta_2 T_i + \xi_2^\top X_i + \epsilon_{i2},$$

$$Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \xi_3^\top X_i + \epsilon_{i3}.$$

- Fit two least squares regressions separately
- Use product of coefficients $(\hat{\beta}_2 \hat{\gamma})$ to estimate ACME
- Use asymptotic variance to test significance (Sobel test)
- Under SI and the no-interaction assumption $(\bar{\delta}(1) \neq \bar{\delta}(0))$, $\hat{\beta}_2\hat{\gamma}$ consistently estimates ACME
- Can be extended to LSEM with interaction terms
- Problem: Only valid for the simplest LSEM

Proposed General Estimation Algorithm

- Model outcome and mediator
 - Outcome model: $p(Y_i | T_i, M_i, X_i)$
 - Mediator model: $p(M_i | T_i, X_i)$
 - These models can be of any form (linear or nonlinear, semior nonparametric, with or without interactions)
- Predict mediator for both treatment values $(M_i(1), M_i(0))$
- **3** Predict outcome by first setting $T_i = 1$ and $M_i = M_i(0)$, and then $T_i = 1$ and $M_i = M_i(1)$
- Compute the average difference between two outcomes to obtain a consistent estimate of ACME
- Monte-Carlo or bootstrapping to estimate uncertainty

Need for Sensitivity Analysis

- Standard experiments require sequential ignorability to identify mechanisms
- The sequential ignorability assumption is often too strong
- Need to assess the robustness of findings via sensitivity analysis
- Question: How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Parametric sensitivity analysis by assuming

$$\{Y_i(t',m),M_i(t)\} \perp T_i \mid X_i = x$$

but not

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x$$

Possible existence of unobserved pre-treatment confounder

Parametric Sensitivity Analysis

- Sensitivity parameter: $\rho \equiv Corr(\epsilon_{i2}, \epsilon_{i3})$
- Sequential ignorability implies $\rho = 0$
- ullet Set ho to different values and see how ACME changes
- Result:

$$\bar{\delta}(0) = \bar{\delta}(1) = \frac{\beta_2 \sigma_1}{\sigma_2} \left\{ \tilde{\rho} - \rho \sqrt{(1 - \tilde{\rho}^2)/(1 - \rho^2)} \right\},\,$$

where $\sigma_j^2 \equiv \text{var}(\epsilon_{ij})$ for j = 1, 2 and $\tilde{\rho} \equiv \text{Corr}(\epsilon_{i1}, \epsilon_{i2})$.

- When do my results go away completely?
- $\bar{\delta}(t) = 0$ if and only if $\rho = \tilde{\rho}$
- Easy to estimate from the regression of Y_i on T_i :

$$Y_i = \alpha_1 + \beta_1 T_i + \epsilon_{i1}$$

Interpreting Sensitivity Analysis with R squares

- Interpreting ρ : how small is too small?
- An unobserved (pre-treatment) confounder formulation:

$$\epsilon_{i2} = \lambda_2 U_i + \epsilon'_{i2}$$
 and $\epsilon_{i3} = \lambda_3 U_i + \epsilon'_{i3}$

- How much does U_i have to explain for our results to go away?
- Sensitivity parameters: R squares
 - Proportion of previously unexplained variance explained by U_i

$$R_M^{2*} \equiv 1 - \frac{\operatorname{var}(\epsilon'_{i2})}{\operatorname{var}(\epsilon_{i2})}$$
 and $R_Y^{2*} \equiv 1 - \frac{\operatorname{var}(\epsilon'_{i3})}{\operatorname{var}(\epsilon_{i3})}$

2 Proportion of original variance explained by U_i

$$\widetilde{R}_{M}^{2} \equiv \frac{\operatorname{var}(\epsilon_{i2}) - \operatorname{var}(\epsilon_{i2}')}{\operatorname{var}(M_{i})}$$
 and $\widetilde{R}_{Y}^{2} \equiv \frac{\operatorname{var}(\epsilon_{i3}) - \operatorname{var}(\epsilon_{i3}')}{\operatorname{var}(Y_{i})}$

• Then reparameterize ρ using (R_M^{2*}, R_Y^{2*}) (or $(\widetilde{R}_M^2, \widetilde{R}_Y^2)$):

$$\rho = \operatorname{sgn}(\lambda_2 \lambda_3) R_M^* R_Y^* = \frac{\operatorname{sgn}(\lambda_2 \lambda_3) \widetilde{R}_M \widetilde{R}_Y}{\sqrt{(1 - R_M^2)(1 - R_Y^2)}},$$

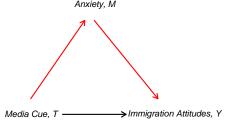
where R_M^2 and R_Y^2 are from the original mediator and outcome models

- sgn(λ₂λ₃) indicates the direction of the effects of U_i on Y_i and M_i
- Set (R_M^{2*}, R_Y^{2*}) (or (R_M², R_Y²)) to different values and see how mediation effects change

Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

- How and why do ethnic cues affect immigration attitudes?
- Theory: Anxiety transmits the effect of cues on attitudes



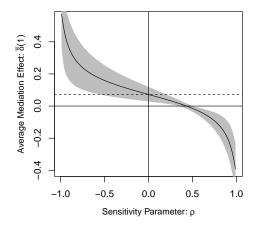
- ACME = Average difference in immigration attitudes due to the change in anxiety induced by the media cue treatment
- Sequential ignorability = No unobserved covariate affecting both anxiety and immigration attitudes

Reanalysis: Estimates under Sequential Ignorability

- Original method: Product of coefficients with the Sobel test
 - Valid only when both models are linear w/o T-M interaction (which they are not)
- Our method: Calculate ACME using our general algorithm

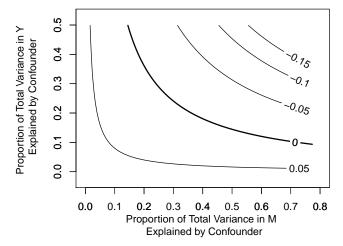
	Product of	Average Causal
Outcome variables	Coefficients	Mediation Effect (δ)
Decrease Immigration	.347	.105
$ar{\delta}(1)$	[0.146, 0.548]	[0.048, 0.170]
Support English Only Laws	.204	.074
$ar{\delta}(1)$	[0.069, 0.339]	[0.027, 0.132]
Request Anti-Immigration Information	.277	.029
$ar{\delta}(1)$	[0.084, 0.469]	[0.007, 0.063]
Send Anti-Immigration Message	.276	.086
$ar{\delta}(ilde{1})$	[0.102, 0.450]	[0.035, 0.144]

Reanalysis: Sensitivity Analysis w.r.t. ρ



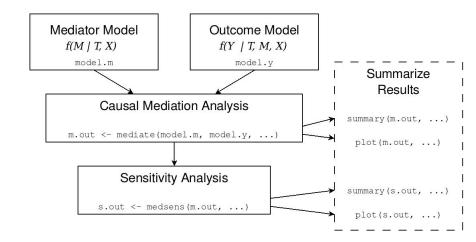
 ACME > 0 as long as the error correlation is less than 0.39 (0.30 with 95% CI)

Reanalysis: Sensitivity Analysis w.r.t. \tilde{R}_M^2 and \tilde{R}_Y^2



 An unobserved confounder can account for up to 26.5% of the variation in both Y_i and M_i before ACME becomes zero

Overview of **R** Package **mediation**



• Fit models for the mediator and outcome variable and store these models.

```
> m <- lm(Mediator ~ Treat + X)
> y <- lm(Y ~ Treat + Mediator + X)</pre>
```

Mediation analysis: Feed model objects into the mediate() function. Call a summary of results.

Sensitivity analysis: Feed the output into the medsens () function. Summarize and plot.

```
> s.out <- medsens(m.out)
> summary(s.out)
> plot(s.out, "rho")
> plot(s.out, "R2")
```

Data Types Available via **mediation** (For Now)

• For the mediate() function:

	Outcome Model Types				
Mediator Model Types	Linear	GLM	Ordered	Censored	Quantile
Linear (lm)	✓	√	√*	✓	✓
GLM (probit etc.)	\checkmark	\checkmark	✓*	\checkmark	\checkmark
Ordered	\checkmark	\checkmark	√ *	\checkmark	\checkmark
Censored (tobit)	-	-	-	-	-
Quantile	✓*	✓*	✓*	✓*	✓*

- Can also deal with interaction between treatment and mediator and semiparametric regression
- For the medsens () function:

	Outcome			
Mediator	Continuous	Ordered	Binary	
Continuous	Yes	No	Yes	
Ordered	No	No	No	
Binary	Yes	No	No	

Beyond Sequential Ignorability

- Without sequential ignorability, standard experimental design lacks identification power
- Even the sign of ACME is not identified
- Need to develop alternative experimental designs for more credible inference
- Possible when the mediator can be directly or indirectly manipulated

Parallel Design

Randomly split sample Experiment 1 1) Randomize treatment 1) Randomize treatment 2) Measure mediator 3) Measure outcome 2) Randomize mediator 3) Measure outcome

- Must assume no direct effect of manipulation on outcome
- More informative than standard single experiment
- If we assume no T-M interaction, ACME is point identified

Example from Behavioral Neuroscience

Why study brain?: Social scientists' search for causal mechanisms underlying human behavior

Psychologists, economists, and even political scientists

Question: What mechanism links low offers in an ultimatum game with "irrational" rejections?

 A brain region known to be related to fairness becomes more active when unfair offer received (single experiment design)

Design solution: manipulate mechanisms with TMS

 Knoch et al. use TMS to manipulate — turn off — one of these regions, and then observes choices (parallel design)

Limitations

Difference between manipulation and mechanism

Prop.	$M_i(1)$	$M_i(0)$	$Y_i(t,1)$	$Y_i(t,0)$	$\delta_i(t)$
0.3	1	0	0	1	-1
0.3	0	0	1	0	0
0.1	0	1	0	1	1
0.3	1	1	1	0	0

- Here, $\mathbb{E}(M_i(1) M_i(0)) = \mathbb{E}(Y_i(t, 1) Y_i(t, 0)) = 0.2$, but $\bar{\delta}(t) = -0.2$
- Limitations:
 - Direct manipulation of the mediator is often impossible
 - Even if possible, manipulation can directly affect outcome
- Need to allow for subtle and indirect manipulations

Encouragement Design

- Randomly encourage subjects to take particular values of the mediator M_i
- Standard instrumental variable assumptions (Angrist et al.)

Use a 2×3 factorial design:

- Randomly assign T_i
- Also randomly decide whether to positively encourage, negatively encourage, or do nothing
- Measure mediator and outcome
 - Informative inference about the "complier" ACME
 - Reduces to the parallel design if encouragement is perfect
 - Application to the immigration experiment:
 Use autobiographical writing tasks to encourage anxiety

Crossover Design

- Recall ACME can be identified if we observe $Y_i(t', M_i(t))$
- Get $M_i(t)$, then switch T_i to t' while holding $M_i = M_i(t)$
- Crossover design:
 - Round 1: Conduct a standard experiment
 - Round 2: Change the treatment to the opposite status but fix the mediator to the value observed in the first round
- Very powerful identifies mediation effects for each subject
- Must assume no carryover effect: Round 1 must not affect Round 2
- Can be made plausible by design

Example from Labor Economics

Bertrand & Mullainathan (2004, AER)

- Treatment: Black vs. White names on CVs
- Mediator: Perceived qualifications of applicants
- Outcome: Callback from employers
- Quantity of interest: Direct effects of (perceived) race
- Would Jamal get a callback if his name were Greg but his qualifications stayed the same?
- Round 1: Send Jamal's actual CV and record the outcome
- Round 2: Send his CV as Greg and record the outcome
- Assumptions are plausible

Crossover Encouragement Design

- Crossover encouragement design:
 - Round 1: Conduct a standard experiment
 - Round 2: Same as crossover, except encourage subjects to take the mediator values

EXAMPLE Hainmueller & Hiscox (2010, APSR)

- Treatment: Framing immigrants as low or high skilled
- Outcome: Preferences over immigration policy
- Possible mechanism: Low income subjects may expect higher competition from low skill immigrants
- Manipulate expectation using a news story
- Round 1: Original experiment but measure expectation
- Round 2: Flip treatment, but encourage expectation in the same direction as Round 1

Designing Observational Studies

- Key difference between experimental and observational studies: treatment assignment
- Sequential ignorability:
 - Ignorability of treatment given covariates
 - Ignorability of mediator given treatment and covariates
- Both (1) and (2) are suspect in observational studies
- Statistical control: matching, propensity scores, etc.
- Search for quasi-randomized treatments: "natural" experiments
- How can we design observational studies?
- Experiments can serve as templates for observational studies

Example from Political Science

EXAMPLE Incumbency advantage

- Estimation of incumbency advantages goes back to 1960s
- Why incumbency advantage? Scaring off quality challenger
- Use of cross-over design (Levitt and Wolfram)
 - 1st Round: two non-incumbents in an open seat
 - 2 2nd Round: same candidates with one being an incumbent
- Assume challenger quality (mediator) stays the same
- Estimation of direct effect is possible
- Redistricting as natural experiments (Ansolabehere et al.)
 - 1st Round: incumbent in the old part of the district
 - 2 2nd Round: incumbent in the new part of the district
- Challenger quality is the same but treatment is different
- Estimation of direct effect is possible

Concluding Remarks

- Even in a randomized experiment, a strong assumption is needed to identify causal mechanisms
- However, progress can be made toward this fundamental goal of scientific research with modern statistical tools
- A general, flexible estimation method is available once we assume sequential ignorability
- Sequential ignorability can be probed via sensitivity analysis
- More credible inferences are possible using clever experimental designs
- Insights from new experimental designs can be directly applied when designing observational studies

The project website for papers and software:

http://imai.princeton.edu/projects/mechanisms.html

Email for comments and suggestions:

kimai@Princeton.Edu