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@ This talk is based on the following paper:

Imai, Kosuke, Luke Keele, and Teppei Yamamoto.
“Identification and Inference in Causal Mediation Analysis”
available at http://imai.princeton.edu/

@ Help from Dustin Tingley is acknowledged
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Randomized Experiments and Causal Mechanisms

@ Causal inference is a central goal of social science
@ Randomized experiments as

@ But, experiments are a JolEld @ o)
@ Can only tell whether the treatment causally affects the outcome

@ Not how and why the treatment affects the outcome

@ Challenge is how to identify causal mechanisms
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What This Talk is About

@ Goal: Show how to identify causal mechanisms using statistics
@ Method: Causal Mediation Analysis

Mediator, M

Treatment, T > Qutcome, Y

@ Direct and indirect effects; intermediate and intervening variables
@ Popular among social psychologists (e.g., Baron and Kenny)
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Current Practice

@ Regression
Yi = a+ 08T+ yYMi+ 06X + ¢;
@ Each coefficient is interpreted as a causal effect
@ Sometimes, it’s called marginal (or partial) effect
@ Idea: increase T; by one unit while holding M; and X; constant

@ Post-treatment bias: if you change T;, that may also change M;

@ Usual advice: only include causally prior (or pre-treatment)
variables

@ But, then you lose causal mechanisms!
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Causal Mediation in Interactive Experiment |

@ Communication can influence behavior in strategic games

@ But what psychological mechanisms are at work?

@ Drolet and Morris (2000). J. of Experimental Social Psychology
@ Rapport vs. positive affect and expectations

Mediator: Rapport

Treatment: S Outcome:
7 . .
Face to Face Cooperation in PD

Mediator: Positive Affect or Expectations
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Experimental Design and Finding

@ How does rapport differ from positive affect and expectations?

shared sense of mutual understanding
dyadic or group level process
convergence of nonverbal expressions
observable by a third party

@ Experimental Design:

e randomized treatment: face-to-face or telephone conversation
talk about “positive experiences at Stanford”

fill out surveys measuring rapport and positive expectations
measure outside observers’ perception of rapport

play a single shot PD game

@ Finding: rapport mediates the positive effects of face-to-face
communication, but positive affect and expectations do not
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Causal Mediation Analysis in Interactive Experiment Il

@ People overbit in auctions. Why?

@ Useful for designing better auctions
@ Delgado et al. (2008) Science

@ Fear of losing vs. Joy of winning

Mediator: Fear of Losing

Treatment: S Ou_thme:
Auction Bidding

Mediator: Joy of Winning
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Experimental Design and Findings

@ Randomized treatment: lottery or two-person auction
@ fMRI to measure BOLD response to outcomes in the right striatum
@ Evaluate causal mechanisms of overbidding

@ Greater change in BOLD signal when subject lost in auction
@ Little change when subject won
@ Important mediating role of fear of losing in auction
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Formal Statistical Framework of Causal Inference

@ Units:i=1,...,n

@ “Treatment”:. T, = 1 if treated, T; = 0 otherwise

@ Observed outcome: Y;

@ Pre-treatment covariates: X;

@ Potential outcomes: Y;(1) and Y;(0) where Y; = Yi(T;)

Subject Communication Cooperation Average How many

pair i type T; Yi(1) Yi(0) age X;; economists X,
1 1 1 ? 20 1
2 0 ? 0 21.5 0
3 0 ? 1 19 2
n 1 0 ? 22 2

@ Causal effect: Y;(1) — Y;(0)
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|dentification of Causal Effects in Standard Settings

@ Nonparametric identification: What can we learn from the data
generating process alone?

@ Average Treatment Effect (ATE):

T =E(Yi(1) - Yi(0))
@ Ignorability (randomization, no omitted variable):

(Yi(1),Y(0)) L T; | X;
@ Identification under ignorability:

T = E(Yi| Ti=1,X)—-E(Y;| Ti =0, X))
@ Relationship with the linear regression:
Yi(Ti) = a+ BT+ Xi + €

where ignorability implies T; L ¢; | X;
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Notation for Causal Mediation Analysis

@ Binary treatment: T; € {0,1}
@ Mediator: M,

@ Outcome: Y;

@ Observed covariates: X;

@ Potential mediators: M;(t) where M; = M;(T;)
@ Potential outcomes: Y;(t, m) where Y; = Yi(T;, Mi(T;))
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Defining and Interpreting Causal Mediation Effects

@ Total causal effect: ; = Y;(1, M;(1)) — Y;(0, M;(0))

@ Causal mediation effects:
oi(t) = Yi(t,Mi(1)) — Yi(t, M;(0))

@ Change the mediator from M;(0) to M;(1) while holding the
treatment constant at ¢

@ Indirect effect of the treatment on the outcome through the
mediator under treatment status ¢

@ Yi(t, Mi(t)) is observable but Y;(t, M;(1 — t)) is not
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@ Direct effects:
Gi(t) = Yi(1, Mi(t)) — Yi(0, Mi(1))

@ Change the treatment from 0 to 1 while holding the mediator
constant at M;(t)

@ Total effect = mediation (indirect) effect + direct effect:

i = 0i(t) + G(1 1)

@ Quantities of interest: Average Causal Mediation Effects,

o(t) = E(6i(1)) = E{Yi(t, Mi(1)) - Yi(t, Mi(0))}
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The Main Identification Result

Assumption 1 (Sequential Ignorability)
Yi(t, m) L M| T, X
fort =0,1 and m e M.

Theorem 1 (Nonparametric ldentification)
Under Assumption 1, fort = 0,1,

o(t) = (1)t/{/E(Yi | M, Ti = £, X)) dP(M; | Ti =1 -, X;)

—E(Yi | Ti = f,Xf)}dP(Xi)
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Theoretical and Practical Implications

@ Existing statistics literature concludes that an additional
assumption is required for the identification of mediation effects
@ However, sequential ignorability alone is sufficient
@ Fit two nonparametric regressions:
Q@ um(x) = EWY; | Ti=t,Mi=m, X = x)
Q \in(x) = Pr((Mi=m| T, =tX =x)

@ The plug-in estimator for a discrete mediator:

(1) {JZ‘ S 1T =1 = 8 m(X) S50 1T = ham(X)Aim(X)
m=0 ni—e o1 HTi = thAm(X)

n J—1
_%t Z1{T- =t} (Z ,LALtm(Xi)S\tm(Xi)> } -
=1 m=0
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|dentification under Linear Structural Equation Model

Theorem 2 (Identification under LSEM)
Consider the following linear structural equation model

Mi = oo+ BT+ €z,
Yi = az+ G3Ti+vYM; + e3;.

Under Assumption 1, the average causal mediation effects are
identified as §(0) = d6(1) = [o7.

@ Run two (not three) regressions and multiply two coefficients!
@ Direct effect: (3

@ Total effect: oy + 33

@ Total effect could be zero even when mediation effects are not
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Need for Sensitivity Analysis

@ The sequential ignorability assumption is often too strong
@ Need to assess the robustness of findings via sensitivity analysis

@ Question: How large a departure from the key assumption must
occur for the conclusions to no longer hold?

@ Parametric and nonparametric sensitivity analysis by assuming

but not
Yi(t, m) 1L M; | T;, X
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Parametric Sensitivity Analysis

@ Sensitivity parameter: p = Corr(eg;, €3/)

@ Existence of omitted variables leads to non-zero p

@ Set p to different values and see how mediation effects change
@ All you have to do: fit another regression

Yi = a3+ 055Ti+¢€3
in addition to the previous two regressions:

Mi = ao+ BoT;+ €
Yi = a3+ G3Ti+vYM; + €3
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@ Estimated causal mediation effects as a function of p (and
identifiable parameters)

Theorem 3 (Identification with a Given Error Correlation)
Under Assumption 3,

* * 2
- - o P 1 . o
50) = 5(1) = oo [ B - £ | 1 <032 23) ,

0o

where aj2 = Var(ej) forj = 2,3, 052 = Var(ej;), 053 = Cov(ezj, €3;), and

€3; = Y€2i + €3;.

@ When do my results go away completely?
@ §(t) = 0if and only if p = Corr(ez;, €3;) (€asy to compute!)
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Political Psychology Experiment: Nelson et al. (APSR)

How does media framing affect citizens’ political opinions?
News stories about the Ku Klux Klan rally in Ohio

Free speech frame (7; = 0) and public order frame (T, = 1)
Randomized experiment with the sample size = 136

Mediators: general attitudes (12 point scale) about the importance
of free speech and public order

Outcome: tolerance (7 point scale) for the Klan rally

Expected findings: negative mediation effects
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Analysis under Sequential Ignorability

Mediator
Estimator Public Order Free Speech
Parametric
No-interaction —0.510 —0.126
[—0.969, —0.051] [—0.388,0.135]
5(0) —0.451 —0.131
[-0.871,—0.031] [—0.404,0.143]
5(1) —0.566 —-0.122
[-1.081,-0.050] [—0.380,0.136]
Nonparametric
5(0) —0.374 —0.094
[—0.823,0.074] [0.434,0.246]
5(1) —0.596 —0.222

[—1.168, —0.024]

[0.662,0.219]
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Parametric Sensitivity Analysis

Average Mediation Effect: &
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Concluding Remarks

@ Quantitative analysis can be used to identify causal mechanisms!
@ Estimate causal mediation effects rather than marginal effects
@ Wide applications in social science disciplines
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