Statistical Analysis of Causal Mechanisms for Randomized Experiments

Kosuke Imai

Department of Politics Princeton University

November 22, 2008 Graduate Student Conference on Experiments in Interactive Decision Making

Kosuke Imai (Princeton)

Causal Mechanisms

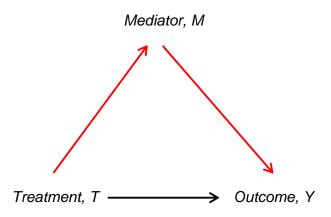
November 22, 2008 1 / 25

- This talk is based on the following paper: Imai, Kosuke, Luke Keele, and Teppei Yamamoto.
 "Identification and Inference in Causal Mediation Analysis" available at http://imai.princeton.edu/
- Help from Dustin Tingley is acknowledged

Randomized Experiments and Causal Mechanisms

- Causal inference is a central goal of social science
- Randomized experiments as gold standard
- But, experiments are a black box
- Can only tell whether the treatment causally affects the outcome
- Not how and why the treatment affects the outcome
- Challenge is how to identify causal mechanisms

- Goal: Show how to identify causal mechanisms using statistics
- Method: Causal Mediation Analysis



- Direct and indirect effects; intermediate and intervening variables
- Popular among social psychologists (e.g., Baron and Kenny)

Current Practice

• Regression

 $Y_i = \alpha + \beta T_i + \gamma M_i + \delta X_i + \epsilon_i$

- Each coefficient is interpreted as a causal effect
- Sometimes, it's called marginal (or partial) effect
- Idea: increase T_i by one unit while holding M_i and X_i constant
- Post-treatment bias: if you change T_i , that may also change M_i
- Usual advice: only include causally prior (or pre-treatment) variables
- But, then you lose causal mechanisms!

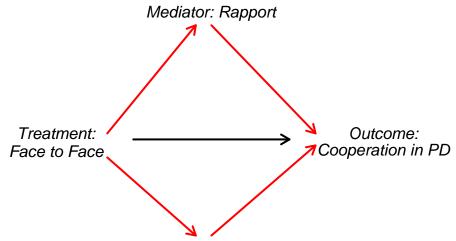
Kosuke Imai (Princeton)

Causal Mechanisms

November 22, 2008 5 / 25

Causal Mediation in Interactive Experiment I

- Communication can influence behavior in strategic games
- But what psychological mechanisms are at work?
- Drolet and Morris (2000). J. of Experimental Social Psychology
- Rapport vs. positive affect and expectations



Mediator: Positive Affect or Expectations

Experimental Design and Finding

- How does rapport differ from positive affect and expectations?
 - shared sense of mutual understanding
 - dyadic or group level process
 - convergence of nonverbal expressions
 - observable by a third party
- Experimental Design:
 - randomized treatment: face-to-face or telephone conversation
 - talk about "positive experiences at Stanford"
 - fill out surveys measuring rapport and positive expectations
 - measure outside observers' perception of rapport
 - play a single shot PD game

• Finding: rapport mediates the positive effects of face-to-face communication, but positive affect and expectations do not

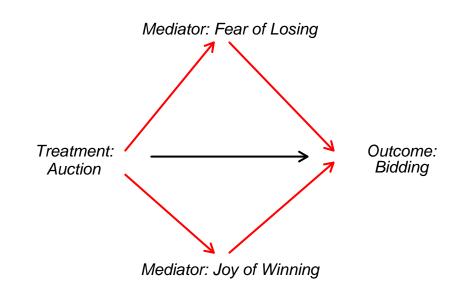
```
Kosuke Imai (Princeton)
```

Causal Mechanisms

November 22, 2008 7 / 25

Causal Mediation Analysis in Interactive Experiment II

- People overbit in auctions. Why?
- Useful for designing better auctions
- Delgado et al. (2008) Science
- Fear of losing vs. Joy of winning



Experimental Design and Findings

- Randomized treatment: lottery or two-person auction
- fMRI to measure BOLD response to outcomes in the right striatum
- Evaluate causal mechanisms of overbidding
- Greater change in BOLD signal when subject lost in auction
- Little change when subject won
- Important mediating role of fear of losing in auction

Kosuke Imai (Princeton)

Causal Mechanisms

November 22, 2008 9 / 25

Formal Statistical Framework of Causal Inference

- Units: *i* = 1, . . . , *n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Observed outcome: Y_i
- Pre-treatment covariates: X_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$ where $Y_i = Y_i(T_i)$

Subject	Communication	Coope	eration	Average	How many
pair <i>i</i>	type <i>T_i</i>	$Y_{i}(1)$	$Y_i(0)$	age X_{1i}	economists X _{2i}
1	1	1	?	20	1
2	0	?	0	21.5	0
3	0	?	1	19	2
÷	:	÷	÷	÷	÷
n	1	0	?	22	2

• Causal effect: $Y_i(1) - Y_i(0)$

Identification of Causal Effects in Standard Settings

- Nonparametric identification: What can we learn from the data generating process alone?
- Average Treatment Effect (ATE):

$$\tau \equiv \mathbb{E}(Y_i(1) - Y_i(0))$$

• Ignorability (randomization, no omitted variable):

$$(Y_i(1), Y_i(0)) \perp T_i \mid X_i$$

• Identification under ignorability:

$$\tau = \mathbb{E}(Y_i \mid T_i = 1, X_i) - \mathbb{E}(Y_i \mid T_i = 0, X_i)$$

• Relationship with the linear regression:

$$Y_i(T_i) = \alpha + \beta T_i + \gamma X_i + \epsilon_i$$

where ignorability implies $T_i \perp \epsilon_i \mid X_i$

```
Kosuke Imai (Princeton)
```

Causal Mechanisms

November 22, 2008 11 / 25

Notation for Causal Mediation Analysis

- Binary treatment: $T_i \in \{0, 1\}$
- Mediator: *M_i*
- Outcome: Y_i
- Observed covariates: X_i
- Potential mediators: $M_i(t)$ where $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$ where $Y_i = Y_i(T_i, M_i(T_i))$

- Total causal effect: $\tau_i \equiv Y_i(1, M_i(1)) Y_i(0, M_i(0))$
- Causal mediation effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Change the mediator from M_i(0) to M_i(1) while holding the treatment constant at t
- Indirect effect of the treatment on the outcome through the mediator under treatment status *t*
- $Y_i(t, M_i(t))$ is observable but $Y_i(t, M_i(1 t))$ is not

Kosuke Imai (Princeton)	Causal Mechanisms	November 22, 2008	13 / 25

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Change the treatment from 0 to 1 while holding the mediator constant at M_i(t)
- Total effect = mediation (indirect) effect + direct effect:

$$\tau_i = \delta_i(t) + \zeta_i(1-t)$$

• Quantities of interest: Average Causal Mediation Effects,

$$\overline{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

The Main Identification Result

Assumption 1 (Sequential Ignorability)

$$\{Y_i(t, m), M_i(t)\} \perp T_i \mid X_i,$$

$$Y_i(t, m) \perp M_i \mid T_i, X_i$$

for t = 0, 1 and $m \in \mathcal{M}$.

Theorem 1 (Nonparametric Identification) Under Assumption 1, for t = 0, 1,

$$\bar{\delta}(t) = (-1)^t \int \left\{ \int \mathbb{E}(Y_i \mid M_i, T_i = t, X_i) dP(M_i \mid T_i = 1 - t, X_i) - \mathbb{E}(Y_i \mid T_i = t, X_i) \right\} dP(X_i)$$

Kosuke Imai (Princeton)

Causal Mechanisms

November 22, 2008 15 / 25

Theoretical and Practical Implications

- Existing statistics literature concludes that an additional assumption is required for the identification of mediation effects
- However, sequential ignorability alone is sufficient
- Fit two nonparametric regressions:

$$2 \lambda_{tm}(x) \equiv \Pr(M_i = m \mid T_i = t, X_i = x)$$

• The plug-in estimator for a discrete mediator:

$$(-1)^{t} \left\{ \sum_{m=0}^{J-1} \frac{\sum_{i=1}^{n} \mathbf{1}\{T_{i} = 1 - t\} \hat{\lambda}_{1-t,m}(X_{i}) \sum_{i=1}^{n} \mathbf{1}\{T_{i} = t\} \hat{\mu}_{tm}(X_{i}) \hat{\lambda}_{tm}(X_{i})}{n_{1-t} \sum_{i=1}^{n} \mathbf{1}\{T_{i} = t\} \hat{\lambda}_{tm}(X_{i})} - \frac{1}{n_{t}} \sum_{i=1}^{n} \mathbf{1}\{T_{i} = t\} \left(\sum_{m=0}^{J-1} \hat{\mu}_{tm}(X_{i}) \hat{\lambda}_{tm}(X_{i}) \right) \right\}.$$

Identification under Linear Structural Equation Model

Theorem 2 (Identification under LSEM) Consider the following linear structural equation model

$$\begin{aligned} \mathbf{M}_i &= \alpha_2 + \beta_2 \mathbf{T}_i + \epsilon_{2i}, \\ \mathbf{Y}_i &= \alpha_3 + \beta_3 \mathbf{T}_i + \gamma \mathbf{M}_i + \epsilon_{3i}. \end{aligned}$$

Under Assumption 1, the average causal mediation effects are identified as $\overline{\delta}(0) = \overline{\delta}(1) = \beta_2 \gamma$.

- Run two (not three) regressions and multiply two coefficients!
- Direct effect: β_3
- Total effect: $\beta_2 \gamma + \beta_3$
- Total effect could be zero even when mediation effects are not

Kosuke Imai (Princeton)	Causal Mechanisms	November 22, 2008	17 / 25

Need for Sensitivity Analysis

- The sequential ignorability assumption is often too strong
- Need to assess the robustness of findings via sensitivity analysis
- Question: How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Parametric and nonparametric sensitivity analysis by assuming

$$\{Y_i(t,m), M_i(t)\} \perp T_i \mid X_i$$

but not

$$Y_i(t,m) \perp M_i \mid T_i, X_i$$

Parametric Sensitivity Analysis

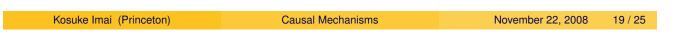
- Sensitivity parameter: $\rho \equiv Corr(\epsilon_{2i}, \epsilon_{3i})$
- Existence of omitted variables leads to non-zero ρ
- Set ρ to different values and see how mediation effects change
- All you have to do: fit another regression

$$Y_i = \alpha_3^* + \beta_3^* T_i + \epsilon_{3i}^*$$

in addition to the previous two regressions:

$$M_{i} = \alpha_{2} + \beta_{2} T_{i} + \epsilon_{2i}$$

$$Y_{i} = \alpha_{3} + \beta_{3} T_{i} + \gamma M_{i} + \epsilon_{3i}$$



• Estimated causal mediation effects as a function of ρ (and identifiable parameters)

Theorem 3 (Identification with a Given Error Correlation) Under Assumption 3,

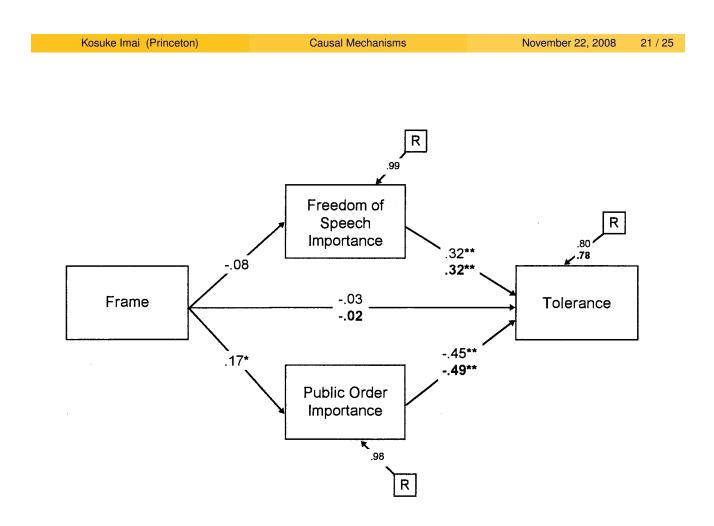
$$\bar{\delta}(0) = \bar{\delta}(1) = \beta_2 \left(\frac{\sigma_{23}^*}{\sigma_2^2} - \frac{\rho}{\sigma_2} \sqrt{\frac{1}{1 - \rho^2} \left(\sigma_3^{*2} - \frac{\sigma_{23}^{*2}}{\sigma_2^2} \right)} \right),$$

where $\sigma_j^2 \equiv \text{Var}(\epsilon_{ji})$ for $j = 2, 3, \sigma_3^{*2} \equiv \text{Var}(\epsilon_{3i}^*), \sigma_{23}^* \equiv \text{Cov}(\epsilon_{2i}, \epsilon_{3i}^*)$, and $\epsilon_{3i}^* = \gamma \epsilon_{2i} + \epsilon_{3i}$.

- When do my results go away completely?
- $\bar{\delta}(t) = 0$ if and only if $\rho = \text{Corr}(\epsilon_{2i}, \epsilon_{3i}^*)$ (easy to compute!)

Political Psychology Experiment: Nelson et al. (APSR)

- How does media framing affect citizens' political opinions?
- News stories about the Ku Klux Klan rally in Ohio
- Free speech frame ($T_i = 0$) and public order frame ($T_i = 1$)
- Randomized experiment with the sample size = 136
- Mediators: general attitudes (12 point scale) about the importance of free speech and public order
- Outcome: tolerance (7 point scale) for the Klan rally
- Expected findings: negative mediation effects



Analysis under Sequential Ignorability

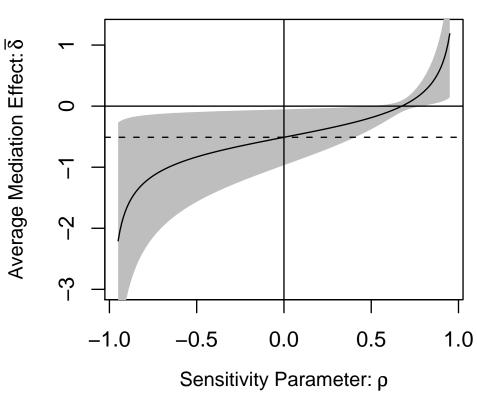
	Mediator		
Estimator	Public Order	Free Speech	
Parametric			
No-interaction	-0.510	-0.126	
	[-0.969, -0.051]	[-0.388, 0.135]	
$\hat{\delta}(0)$	-0.451	-0.131	
	[-0.871, -0.031]	[-0.404, 0.143]	
$\hat{\delta}(1)$	-0.566	-0.122	
	[-1.081, -0.050]	[-0.380, 0.136]	
Nonparametric			
$\hat{\delta}(0)$	-0.374	-0.094	
	[-0.823, 0.074]	[-0.434, 0.246]	
$\hat{\delta}(1)$	-0.596	-0.222	
	[-1.168, -0.024]	[-0.662, 0.219]	

```
Kosuke Imai (Princeton)
```

Causal Mechanisms

November 22, 2008 23 / 25

Parametric Sensitivity Analysis



Parametric Analysis

Concluding Remarks

- Quantitative analysis can be used to identify causal mechanisms!
- Estimate causal mediation effects rather than marginal effects
- Wide applications in social science disciplines

Kosuke Imai (Princeton)

Causal Mechanisms

November 22, 2008 25 / 25