Experimental Identification of Causal Mechanisms

Kosuke Imai

Princeton University

Joint work with Luke Keele, Dustin Tingley, and Teppei Yamamoto

May 21, 2010

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

Experiments, Statistics, and Causal Mechanisms

- Causal inference is a central goal of most scientific research
- Experiments as gold standard for estimating causal effects
- A major criticism of experimentation:

it can only determine whether the treatment causes changes in the outcome, but not how and why

- Experiments merely provide a **black box** view of causality
- But, scientific theories are all about causal mechanisms
- Knowledge about causal mechanisms can also improve policies
- Key Challenge: How can we *design* and analyze experiments to identify causal mechanisms?

Causal Mechanisms as Indirect Effects

- What is a causal mechanism?
- Cochran (1957)'s example: soil fumigants increase farm crops by reducing eel-worms
- Political science example: incumbency advantage
- Causal mediation analysis

- Quantities of interest: Direct and indirect effects
- Fast growing methodological literature

Kosuke Imai (Princeton)

Formal Statistical Framework of Causal Inference

- Binary treatment: $T_i \in \{0, 1\}$
- Mediator: $M_i \in \mathcal{M}$
- Outcome: $Y_i \in \mathcal{Y}$
- Observed covariates: $X_i \in \mathcal{X}$
- Potential mediators: $M_i(t)$ where $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$ where $Y_i = Y_i(T_i, M_i(T_i))$
- Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

Defining and Interpreting Indirect and Direct Effects

- Robins and Greenland, Pearl, Petersen et al., and many others
- Indirect effects (a specific causal mechanism):

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Effect of a change in M_i on Y_i that would be induced by treatment
- Direct effects (other causal mechanisms):

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Causal effect of T_i on Y_i , holding mediator constant at its potential value that would be realized when $T_i = t$
- Decomposition: Total effect = indirect effect + direct effect:

$$\tau_i = \frac{1}{2} \{ \delta_i(0) + \delta_i(1) + \zeta_i(0) + \zeta_i(1) \}$$

Mechanisms and Manipulations

- Mechanisms: Direct and Indirect effects:
 - Counterfactuals about treatment-induced mediator values

Manipulations

• Controlled direct effects:

$$\xi_i(t,m,m') \equiv Y_i(t,m) - Y_i(t,m')$$

- Causal effect of directly manipulating the mediator under $T_i = t$
- Fallacy of the "Causal Chain" approach:

Prop.	$M_{i}(1)$	$M_{i}(0)$	$Y_{i}(t, 1)$	$Y_{i}(t, 0)$	$\delta_i(t)$
0.3	1	0	0	1	-1
0.3	0	0	1	0	0
0.1	0	1	0	1	1
0.3	1	1	1	0	0

$$\mathbb{E}(M_i(1) - M_i(0)) = \mathbb{E}(Y_i(t, 1) - Y_i(t, 0)) = 0.2$$
, but $\bar{\delta}(t) = -0.2$

Single Experiment Design

Assumption Satisfied

• Randomization of treatment

 $\{Y_i(t,m),M_i(t')\} \perp T_i, \mid X_i = x$

1) Randomize treatment

2) Measure mediator

3) Measure outcome

Key Identifying Assumption

• Sequential Ignorability:

 $Y_i(t', m) \perp M_i \mid T_i = t, X_i = x$

- Selection on observables
- Violated if there are unobservables that affect mediator and outcome

- Sequential ignorability yields nonparametric identification
- Many alternative assumptions exist
- Sequential ignorability is an untestable assumption
- Without it, the identification power is weak
- The sign is not identified in the binary case
- Back to an obervational study
- Sensitivity analysis: How large a departure from sequential ignorability must occur for the conclusions to no longer hold?
- Possible pre-treatment unobserved confounders

• Can we design experiments to better identify causal mechanisms?

- Perfect manipulation of the mediator:
 - Parallel Design
 - 2 Crossover Design
- Imperfect manipulation of the mediator:
 - Parallel Encouragement Design
 - Crossover Encouragement Design
- Implications for desining observational studies

The Parallel Design

- No manipulation effect assumption: The manipulation has no direct effect on outcome other than through the mediator value
- Running two experiments in parallel:

Identification under the Parallel Design

- Is the randomization of mediator sufficient? No!
- Sharp bounds: Binary mediator and outcome
- Use of linear programming (Balke and Pearl):
 - Objective function:

$$\mathbb{E}\{Y_i(1, M_i(0))\} = \sum_{y=0}^{1} \sum_{m=0}^{1} (\pi_{1ym1} + \pi_{y1m1})$$

where $\pi_{y_1y_0m_1m_0} = \Pr(Y_i(1,1) = y_1, Y_i(1,0) = y_0, M_i(1) = m_1, M_i(0) = m_0)$

- Constraints implied by $Pr(Y_i = y, M_i = m | T_i = t, D_i = 0)$, $Pr(Y_i = y | M_i = m, T_i = t, D_i = 1)$, and the summation constraint
- More informative than those under the single experiment design
- Can sometimes identify the sign of average direct/indirect effects

Why study brain?: Social scientists' search for causal mechanisms underlying human behavior

• Psychologists, economists, and even political scientists

Question: What mechanism links low offers in an ultimatum game with "irrational" rejections?

• A brain region known to be related to fairness becomes more active when unfair offer received (single experiment design)

Design solution: manipulate mechanisms with TMS

• Knoch et al. use TMS to manipulate — turn off — one of these regions, and then observes choices (parallel design)

The Parallel Encouragement Design

- Direct manipulation of mediator is often difficult
- Even if possible, the violation of no manipulation effect can occur
- Need for indirect and subtle manipulation
- Randomly encourage units to take a certain value of the mediator
- Instrumental variables assumptions (Angrist *et al.*):
 - Encouragement does not discourage anyone
 - Encouragement does not directly affects the outcome
- Not as informative as the parallel design
- Sharp bounds on the average "complier" indirect effects can be informative

A Numerical Example

• Based on the marginal distribution of a real experiment

Experiment 1

- 1) Randomize treatment
- 2) Measure mediator
- 3) Measure outcome

Same sample

Experiment 2

1) Fix treatment opposite Experiment 1

2) Manipulate mediator to level observed in Experiment 1

3) Measure outcome

Basic Idea

- Want to observe $Y_i(1 t, M_i(t))$
- Figure out *M_i*(*t*) and then switch *T_i* while holding the mediator at this value
- Subtract direct effect from total effect

Key Identifying Assumptions

- No Manipulation Effect
- No Carryover Effect: First experiment doesn't affect second experiment
- Not testable, longer "wash-out" period

A Labor Market Discrimination Experiment

- Bertland and Mullainathan: manipulation of names on resumes
- Treatment: Black vs. White and Male vs. Female sounding names
- Mediator: perceived qualifications of applicants
- Outcome: callback rates
- (Natural) direct effects of applicants' race may be of interest
- Would Jamal get a callback if we send his resume as Greg?
- $\mathbb{E}(Y_i(1, M_i(1)) Y_i(0, M_i(1)))$ vs. $\mathbb{E}(Y_i(1, m) Y_i(0, m))$
- Key difference: use of actual resumes rather than fictitious ones
- First, send Jamal's resume as it is and record the outcome
- Then, send his resume as Greg and record the outcome
- No manipulation effect: potential employers are unaware
- Carryover effect: can be avoided if we send resumes to different (randomly matched) employers at the same time

Experiment 1

- 1) Randomize treatment
- 2) Measure mediator

3) Measure outcome (optional)

Same sample

Experiment 2

1) Fix treatment opposite Experiment 1

2) Randomly encourage mediator to level observed in Experiment 1

3) Measure outcome

Key Identifying Assumptions

- Encouragement doesn't discourage anyone
- No Manipulation Effect
- No Carryover Effect

Identification Analysis

- Identify indirect effects for "compliers"
- No carryover effect assumption is indirectly testable (unlike the crossover design)

Implications for the Design of Observational Studies

- Use of "natural experiments" in the social sciences
- Attempts to "replicate" experiments in observational studies
- Political science literature on incumbency advantage
- During 70s and 80s, the focus is on estimation of causal effects
- Positive effects, growing over time
- Last 20 years, search for causal mechanisms
- How large is the "scare-off/quality effect"?
- Estimation of direct effects using the crossover design:
 - Use of repeat match-ups over two elections (Levitt) identifies $\mathbb{E}(Y_i(1, M_i(0)) Y_i(0, M_i(0)))$ for some districts
 - **2** Use of redistricting (Ansolabehere et al, Sekhon & Titiunik) identifies $\mathbb{E}(Y_i(1, M_i(1)) Y_i(0, M_i(1)))$ for parts of some districts

Concluding Remarks

- Identification of causal mechanisms is difficult but is possible
- Additional assumptions are required
- Five strategies:
 - Single experiment design
 - Parallel design
 - Orossover design
 - Encouragement design
 - Scrossover encouragement design
- Statistical assumptions: sequential ignorability, no interaction
- Design assumptions: no manipulation, no carryover effect
- Experimenters' creativity and technological development to improve the validity of these design assumptions

- Imai, Keele, and Yamamoto. (2010). "Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects." *Statistical Science*, Forthcoming.
- Imai, Keele, and Tingley. "A General Approach to Causal Mediation Analysis." Working paper.
- Imai, Tingley, and Yamamoto. "Experimental Identification of Causal Mechanisms." Working paper.

available at http://imai.princeton.edu