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This Talk Draws on the Following Papers:

Imai, Kosuke, Gary King, and Elizabeth A. Stuart.
“Misunderstandings among Experimentalists and
Observationalists: Balance Test Fallacies in Causal Inference.”

Ho, Daniel E., Kosuke Imai, Gary King, and Elizabeth A. Stuart.
(2007). “Matching as Nonparametric Preprocessing for Reducing
Model Dependence in Parametric Causal Inference.” Political
Analysis, Forthcoming.

Horiuchi, Yusaku, Kosuke Imai, and Naoko Taniguchi. (2007).
“Designing and Analyzing Randomized Experiments: Application
to a Japanese Election Survey Experiment.” American Journal of
Political Science, Vol. 51, No. 3 (July), pp. 670-689.

Imai, Kosuke. “Randomization-based Analysis of Randomized
Experiments under the Matched-Pair Design: Variance Estimation
and Efficiency Considerations.”
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What are Matching Methods? Experimental Studies

Matching Methods in Experimental Studies

1 Matched-Pair Design:
1 Create pairs of observations based on the pre-treatment covariates

so that the two observations within each matched-pair are similar.
2 Randomly assign the treatment within each matched-pair (either

simple randomization or complete randomization across pairs).
3 Inference is based on the average of within-pair estimates.

2 Randomized-block Design:
1 Form a group or block of (more than two) observations based on

the pre-treatment covariates so that the observations within each
block are similar.

2 Complete randomization of the treatment within each block.
3 Inference is based on the weighted average of within-block

estimates.

Matching and blocking can be based on a single covariate or a
function of multiple covariates (e.g., Mahalanobis distance).
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What are Matching Methods? Experimental Studies

An Example of Randomized-block Design

Japanese election experiment: randomly selected voters are
encouraged to look at the party manifestos on the official party
websites during Japan’s 2004 Upper House election.

Randomized blocks
I II III IV V VI

Planning to vote Not planning to vote Undecided
M F M F M F Total

Treatment groups
DPJ website 194 151 24 33 36 62 500
LDP website 194 151 24 33 36 62 500
DPJ/LDP websites 117 91 15 20 20 37 300
LDP/DPJ websites 117 91 15 20 20 37 300

Control group
no website 156 121 19 26 29 49 400

Block size 778 605 97 132 141 247 2000
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What are Matching Methods? Observational Studies

Matching Methods in Observational Studies

1 Matching:
Each treated unit is paired with a similar control unit based on the
pre-treatment covariates.

2 Subclassification:
Treated and control units are grouped to form subclasses based on
the pre-treatment covariates so that within each subclass treated
units are similar to control units.

3 Weighting:
Weight each observation within the treated or control groups by the
inverse of the probability of being in that group.

Weighting is based on the propensity score (i.e., the probability of
receiving the treatment).
Matching and subclassification are based on the propensity score
and other measures of similarity.
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Framework and Notation

Notations and Quantities of Interest

Notations
Population size: N.
Sample size: n.
Sample selection: Ii .
Binary treatment assignment: Ti .
Potential outcomes: Yi(1) and Yi(0).
Observed outcome: Yi = TiYi(1) + (1− Ti)Yi(0) for Ii = 1.
Observed and unobserved pre-treatment covariates: Xi and Ui .

Quantities of Interest
1 Unit treatment effect: TEi ≡ Yi(1)− Yi(0).
2 Sample average treatment effect: SATE≡ 1

n

∑
i∈{Ii=1} TEi .

3 Population average treatment effect: PATE≡ 1
N

∑N
i=1 TEi .

Super-population
N units are sampled from a population of infinite size.
Super-population average treatment effect:
SPATE≡ E [Yi(1)− Yi(0)].
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Decomposition Overview

A Decomposition of Causal Effect Estimation Error

A simple estimator of the PATE, SATE, or SPATE:

D ≡

 1
n/2

∑
i ∈{Ii=1,Ti=1}

Yi

−

 1
n/2

∑
i ∈{Ii=1,Ti=0}

Yi

 .

Estimation error for the PATE: ∆ ≡ PATE− D.
Consider an additive model: Yi(t) = gt(Xi) + ht(Ui) for t = 0, 1.
New decomposition:

∆ = ∆S + ∆T = (∆SX
+ ∆SU

) + (∆TX + ∆TU ).

1 ∆S: sample selection error due to observables (∆SX ) and
unobservables (∆SU ).

2 ∆T : treatment imbalance due to observables (∆TX ) and
unobservables (∆TU ).

Generalizable to SPATE, various average treatment effects on the
treated, and other settings.
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Decomposition Sample Selection

Sample Selection Error

Definition:

∆S ≡ PATE− SATE =
N − n

N
(NATE− SATE),

where NATE is the nonsample average treatment effect, i.e.,
NATE ≡

∑
i∈{Ii=0} TEi/(N − n).

When does ∆S equal 0?
1 N = n: The sample is a census of the population.
2 SATE = NATE: The average treatment effect is the same between

the sample and nonsample.
3 Give up PATE and focus on SATE.
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Decomposition Sample Selection

Decomposition of Sample Selection Error

Sample selection error due to observables:

∆SX
=

N − n
N

∫
[g1(X )− g0(X )] d [F̃ (X | I = 0)− F̃ (X | I = 1)],

where F̃ (·) represents the empirical distribution function.

When does ∆SX
equal 0?

1 F̃ (X | I = 0) = F̃ (X | I = 1): identical distributions of Xi .
2 g1(Xi)− g0(Xi) = α: constant treatment effect over Xi .

The same argument applies to the sample selection error due to
unobservables:

∆SU
=

N − n
N

∫
[h1(U)− h0(U)] d [F̃ (U | I = 0)− F̃ (U | I = 1)].
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Decomposition Treatment Imbalance

Treatment Imbalance Error

Decomposition of estimation error due to treatment imbalance:

∆TX =

∫
g1(X ) + g0(X )

2
d [F̃ (X | T = 0, I = 1)− F̃ (X | T = 1, I = 1)],

∆TU =

∫
h1(U) + h0(U)

2
d [F̃ (U | T = 0, I = 1)− F̃ (U | T = 1, I = 1)].

∆TX and ∆TU vanish if the treatment and control groups are
balanced (i.e., have identical empirical distributions):

F̃ (X | T = 1, I = 1) = F̃ (X | T = 0, I = 1),

F̃ (U | T = 1, I = 1) = F̃ (U | T = 0, I = 1).

The first condition is verifiable from the observed data but the
second is not.
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Decomposition Implications of the Decomposition

The Role of Matching Methods in Causal Inference

The decomposition formalizes the role of matching methods in
reducing the estimation error.
In both experimental and observational studies, matching
methods try to reduce ∆TX given by:∫

g1(X ) + g0(X )

2
d [F̃ (X | T = 0, I = 1)− F̃ (X | T = 1, I = 1)],

which represents the estimation error due to the treatment
imbalance in observables.
They do so by trying to achieve:

F̃ (X | T = 1, I = 1) = F̃ (X | T = 0, I = 1).

In practice, some imbalance remains and needs to be adjusted by
randomization (in experimental studies) and model adjustments
(observational studies – matching as “nonparametric
preprocessing”).
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Decomposition Implications of the Decomposition

Consequences of Design Choices on Estimation Error

Design Choice ∆SX
∆SU

∆TX ∆TU

Random sampling
avg
= 0

avg
= 0

Focus on SATE rather than PATE = 0 = 0
Weighting for nonrandom sampling = 0 =?
Large sample size →? →? →? →?

Random treatment assignment
avg
= 0

avg
= 0

Complete blocking = 0 =?
Exact matching = 0 =?

Assumption

No selection bias
avg
= 0

avg
= 0

Ignorability
avg
= 0

No omitted variables = 0
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Decomposition Implications of the Decomposition

What is the Best Design? None!

∆SX ∆SU ∆TX ∆TU

Ideal Experiment → 0 → 0 = 0 → 0
Randomized Clinical Trials

(Limited or no blocking) 6= 0 6= 0
avg
= 0

avg
= 0

Randomized Clinical Trials

(Complete blocking) 6= 0 6= 0 = 0
avg
= 0

Field Experiment
(Limited or no blocking) 6= 0 6= 0 → 0 → 0
Survey Experiment
(Limited or no blocking) → 0 → 0 → 0 → 0
Observational Study
(Representative data set,
Well-matched) ≈ 0 ≈ 0 ≈ 0 6= 0
Observational Study
(Unrepresentative data set,
Well-matched) 6= 0 6= 0 ≈ 0 6= 0
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Fallacies Experimental Studies

Fallacies in Experimental Studies

1 Most applied experimental research conducts simple
randomization of the treatment.

Among all experiments published in APSR, AJPS, and JOP (since
1995) and those listed in Time-sharing Experiments for the Social
Sciences, only one uses matching methods!
Two key analytical results:

1 Randomized-block design always yields more efficient estimates.
2 Matched-pair design usually yields more efficient estimates.

2 Hypothesis tests should be used to examine the process of
randomization itself but not to look for ‘significant imbalance’.

1 Imbalance is a sample concept not a population one, and cannot be
eliminated or reduced by randomization.

2 Only matched-pair or randomized-block designs can eliminate or
reduce imbalance.
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Fallacies Experimental Studies

Proof that Randomized-block Design is Always Better

1 Variance under the complete-randomized design:

Varc(D) =
1

n/2
{Var(Yi(1)) + Var(Yi(0))} .

2 Variance under the randomized-block design:

Varb(D) =
1

n/2

∑
x∈X

wx {(Varx(Yi(1)) + Varx(Yi(0)))} ,

where wx = nx/n is the known population weight for the block
formed by units with Xi = x .

3 Then, since Var(Y (t)) ≥ E [Varx(Yi(t))] =
∑

x∈X wxVarx(Yi(t)),
we have Varc(D) ≥ Varb(D).
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Fallacies Experimental Studies

Proof that Matched-Pair Design is Usually Better

Variance under the Matched-Pair design:

Varm(D) =
1
n
{Var(Y1j(1)− Y2j(0)) + Var(Y2j(1)− Y1j(0))}

Then,

Varc(D)− Varm(D)

=
n − 1

n(2n − 1)
Cov(Y1j(1) + Y1j(0), Y2j(1) + Y2j(0))

Thus, unless matching induces negative correlation, the
matched-pair design yields more efficient estimates.

Kosuke Imai (Princeton University) Matching Methods 16 / 21



Fallacies Experimental Studies

Relative Efficiency of the Matched-Pair Design

One can empirically evaluate the efficiency of the matched-pair
design relative to the complete-randomized design.

Question: Are match-makers dumb?

Under the matched-pair design, I derive the bounds on the
variance one would obtain if the complete-randomized design
were employed.

The bounds are based on:

2(n − 1)

2n − 1
Var(Yij(t)) ≤ Var(Yi(t))

≤ 2(n − 1)

2n − 1
Var(Yij(t)) +

2
2n − 1

E{Yij(t)
2}

for t = 0, 1.

The bounds can be estimated without bias.
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Fallacies Observational Studies

Assessing the Balance in Matching Methods

The success of any matching method depends on the resulting
covariate balance.
How should one assess the balance of matched data?

Ideally, one would like to compare the joint distribution of all
covariates for the matched treatment and control groups.
In practice, this is impossible when X is high-dimensional.

Standard practice: use of balance test
t test for difference in means for each variable of X .
other test statistics such as χ2, F , Kolmogorov-Smirnov tests are
also used.
statistically insignificant test statistics are used as a justification for
the adequacy of the chosen matching method and a stopping rule
for maximizing balance.
the practice is widespread across disciplines (economics,
education, management science, medicine, public health,
psychology, and statistics).
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Fallacies Observational Studies

An Illustration of Balance Test Fallacy

School Dropout
Demonstration
Assistance Program.

Treatment: school
“restructuring”
programs.

Outcome: dropout
rates.

We look at the
baseline math test
score.

“Silly” matching
algorithm: randomly
selects control units
to discard.
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Fallacies Observational Studies

Problems with Hypothesis Tests as Stopping Rules

1 Balance test is a function of both balance and statistical power:
the more observations dropped, the less power the tests have.

2 t-test is affected by factors other than balance,
√

nm(X mt − X mc)√
s2

mt
rm

+ s2
mc

1−rm

X mt and X mc are the sample means.
s2

mt and s2
mc are the sample variances.

nm is the total number of remaining observations.
rm is the ratio of remaining treated units to the total number of
remaining observations.

3 Even a small imbalance can greatly affect the estimates.
Linear regression: E(Y | T , X ) = θ + Tβ + Xγ.
Bias: E(β̂ − β | T , X ) = Gγ where β̂ is the difference in means
estimator and G contains vector of coefficients from regression of
each of the covariates in X on a constant and T .
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Conclusion

Concluding Recommendations

For experimenters:
1 Unbiasedness should not be your goal.
2 Use matching methods to improve efficiency.
3 “block what you can and randomize what you cannot.”

Randomized-block design is always more efficient.
Matched-pair design is often more efficient.

For observationalists:
1 Balance should be assessed by comparing the sample covariate

differences between the treatment and control groups.
2 Do not use hypothesis tests to assess balance.
3 No critical threshold – observed imbalance should be minimized.

For everyone:
1 There is no best design.
2 Minimize each component of the estimation error via design and

analysis: sample selection and treatment imbalance.
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