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Motivation and Overview

@ Matching methods have become part of toolkit for social scientists
© reduces model dependence in observational studies
@ provides diagnostics through balance checks
© clarifies comparison between treated and control units
@ Yet, almost all existing matching methods deal with cross-sectional
data

@ We propose a matching method for time-series cross-sectional data

@ create a matched set for each treated observation
@ refine the matched set via any matching or weighting method
© compute the difference-in-differences estimator

@ Develop an open-source software package PanelMatch

@ Empirical applications:

e Democracy and economic growth (Acemoglu et al.)
o Interstate war and inheritance tax (Scheve & Stasavage)
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Democracy and Economic Growth

@ Acemoglu et al. (2017): an up-to-date empirical study of the
long-standing question in political economy

@ TSCS data set: 184 countries from 1960 to 2010

@ Dynamic linear regression model with fixed effects:

4
Yie = aj+y+ B8Xie + Z {Pe Yit—e+ ng—zi,t—é} + €it
=1

e Xj: binary democracy indicator
o Yj:: log real GDP per capita
e Z;: time-varying covariates (population, trade, social unrest, etc.)

@ Sequential exogeneity assumption:

(lf ‘ {»/It’ t= 17{Xlt/}t/—1>{zlt’}t/ 1,0&,,’}%) =0

@ Nickell bias ~» GMM estimation with instruments (Arellano & Bond)
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Regression Results

A 0.787 0.875
ATE(B)  (0206)  (0.374)
N 1.238 1.204
p1 (0.038)  (0.041)
N —0.207 —0.193
P2 (0.043)  (0.045)
N —0.026 —0.028
p3 (0.028)  (0.028)
N —0.043 —0.036
pa (0.017)  (0.020)
country FE Yes Yes
time FE Yes Yes
time trends No No
covariates No No
estimation OoLS GMM
N 6,336 4,416
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Treatment Variation Plot

Democracy as the Treatment

@ Regression models does not tell us
where the variation comes from

@ Estimation of counterfactual
outcomes requires comparison
between treated and control
observations
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Quantity of Interest and Assumptions

Choose number of lags L = 2,..., for confounder adjustment
Choose number of leads, F = 0,1, ..., for short or long term effects
Average Treatment Effect of Policy Change for the Treated (ATT):

E{Vierr (Xie =1, X001 = 0, {Xie e} o)

Yit+F (Xit =0,Xi:t-1=0, {Xi,t—e}ézz) | Xie = 1, Xjt—1 = 0}

Assumptions:
@ No spillover effect
@ Limited carryover effect (up to L time periods)
© Parallel trend after conditioning:

E[Yierr (Xie = Xiie—1 = 0,{Xit—e}F_p) — Yie-1
‘ Xit = 1,Xi,t—l = 0, {Xi,t—éa Yi,t—é}ézgj {Zi,t—f}ézo]
= IE[Yi,t—i-F (Xit = Xi,t—l = 07 {Xi,t—f}éfzg) - Yi,t—l
| Xie = 0, Xi -1 = 0, {Xit—t, Yie—e} oo, {Zise—t}by]
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Constructing Matched Sets

@ Control units with identical treatment history from time t — L to t — 1
@ Construct a matched set for each treated observation

@ Formal definition:

My = {i/:I',#I',X,-/t:O,X,'/t/:X,'t/ for all t/:t—l,...,t—L}

@ Some treated observations have no matched control
~ change the quantity of interest by dropping them

e Similar to the risk set of Li et al. (2001) but we do not exclude those
who already receive the treatment
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An Example of Matched Set

Country Year Democracy logGDP Population Trade

1 Argentina 1974 1 888.20 20.11 14.45
2 Argentina 1975 1 886.53 29.11 12.61
3 Argentina 1976 0 882.91 20.15 12.11
4  Argentina 1977 0 888.09 29.32 15.15
5 Argentina 1978 0 881.99 29.57 15.54
6 Argentina 1979 0 890.24 29.85 15.93
7 Argentina 1980 O 892.81 30.12 12.23
8 Argentina 1981 0 885.43 30.33  11.39
9 Argentina 1982 0 878.82 30.62 13.40
10 Thailand 1974 1 637.24 4332 37.76
11 Thailand 1975 1 639.51 4290 41.63
12 Thailand 1976 O 645.97 4244  42.33
13 Thailand 1977 0 653.02 4192 4321
14 Thailand 1978 1 660.57 41.39 42.66
15  Thailand 1979 1 663.64 40.82 45.27
16 Thailand 1980 1 666.57 40.18 46.69
17  Thailand 1981 1 670.27 39.44 53.40
18 Thailand 1982 1 673.52 38.59 54.22
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Matched Sets for ATT and ART
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Refining Matched Sets

@ Make additional adjustments for past outcomes and confounders
@ Use any matching or weighting method

@ Mahalanobis distance matching:
@ Compute the distance between treated and matched control obs.

L
. 1 -
Se(i') = > \/(Vi,t—f = Vi) TE ¢ (Vie—e — Vire—o)
(=1

where Vjpr = (Y, ZIt/H)T and Xy = Cov(Vy)
@ Match the most similar J matched control observations

@ Propensity score weighting:
@ Estimate the propensity score

eit({vi,tff}ézl) = Pr(Xi =1] {Vi,tfl}ézl)

© Weight each matched control observation by its inverse
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An Example of Refinement

Country Year Democracy logGDP Population Trade Weight

1 Argentina 1979 0 890.24 29.85 15.93 1.00
2 Argentina 1980 0 892.81 30.12  12.23 1.00
3 Argentina 1981 0 885.43 30.33  11.39 1.00
4 Argentina 1982 0 878.82 30.62 13.40 1.00
5 Argentina 1983 1 881.09 30.75 16.46 1.00
6 Argentina 1984 1 881.76 30.77 15.67 1.00
7 Mali 1979 0 542.02 4380 31.18 0.26
8 Mali 1980 0 535.65 43.96 41.82 0.26
9 Mali 1981 0 529.10 44.07 41.92 0.26
10 Mali 1982 0 522.25 44.45 4253 0.26
11 Mali 1983 0 524.84 44.74 43.65 0.26
12 Mali 1984 0 527.13 4495 45.92 0.26
13 Chad 1979 0 506.71 4461 44.80 0.27
14 Chad 1980 0 498.36 44.84 4575 0.27
15 Chad 1981 0 497.18 45.07 51.58 0.27
16 Chad 1982 0 500.07 45.44 4397 0.27
17 Chad 1983 0 512.20 45.76  29.22 0.27
18 Chad 1984 0 511.63 46.04 29.91 0.27
19  Uruguay 1979 0 858.39 27.23 4151 0.47
20 Uruguay 1980 0 863.39 27.04 37.99 0.47
21  Uruguay 1981 0 864.28 26.93 36.20 0.47
22 Uruguay 1982 0 853.36 26.86 35.84 0.47
23 Uruguay 1983 0 841.87 26.83 33.36 0.47
24 Uruguay 1984 0 840.08 26.82 4298 0.47
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The Multi-period Difference-in-Differences Estimator

@ Compute the weighted average of difference-in-differences among
matched control observations

@ Weights are based on refinement ~» marginal structural models for
the long-term effect of a fixed treatment sequence

@ A synthetic control for each treated observation

@ The l\/IuIti—period DiD estimator:

N T—F
Z Z Dlt{ it+F — Yi,t—l) - Z W,It/ (Yi’,t+F - Yi/,tl)}

N
ZI 1 t L+1 ’tl 1 t=L+1 ireMie

@ Equivalent to the weighted two-way fixed effects estimator:

argmmZZ Wiel (Yie = V7 = Vi Y") = 60X = X; = X 4+ X))
i=1 t=1
where (Y, Y5, Y") and (X;,X;,X") are weighted averages
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Checking Covariate Balance and Computing Standard Error

@ Balance for covariate j at time t — £ in each matched set:
Vie e — z-/ Wi Vi
. J EM; i"t—4,j
Bit( 76) = I = —
\/N1—1 S 02 Die(Vire e — Vi)
@ Average this measure across all treated observations:
N T-F
B(J: = 72 Z DltB:t(J e
i=1 t=L+1
@ Standard error calculation ~~ consider weight as a covariate
@ Block bootstrap
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Simulation Studies

Make simulations realistic by using the Acemoglu et al. data
Balanced TSCS data with N =162 and T =51
Impute missing values in the original data set
Treatment and outcome variables:
L ~
Xii ~ Benoulli <logit1 {d,- + e + Z B Xi oot
=1
L
> ~ 1 3
Z (Cz:rzi,t—e +é [Zf )4 : Zg,t)fl]) })
=0
L L
Yii = i+t Z B¢ Xie—i + Z (C;Zi,tff + ¢ [Z,(}t),e : ZSi,g]) + €it
£=0 £=0

where ¢ "= N(0,02), and Z;.—¢ = (Z; ), 2] ?),, 2 P)T

it—0 Tijt—4
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Robustness to Model Misspecification
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Empirical Application

o ATT with L=4and F=1,2,3,4
@ We consider democratization and authoritarian reversal

@ Examine the number of matched control units

@ 18 (13) treated observations have no matched control
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Improved Covariate Balance
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Estimated Causal Effects

Mahalanobis Matching Propensity Score Matching Propensity Score
Up to 5 matches Up to 10 matches Up to 5 matches Up to 10 matches Weighting

0
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Estimated Effect of
Democratization

Estimated Effect of
Authoritarian Reversal
PR
L L

Years relative to the administration of treatment
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Concluding Remarks

Matching as transparent and simple methods for causal inference

Yet, matching has not been applied to time-series cross-sectional data

@ We propose a matching framework for TSCS data
@ construct matched sets
@ refine matched sets
© compute difference-in-differences estimator

Checking covariates and computing standard errors

R package PanelMatch implements all of these methods

Ongoing research: addressing possible spillover effects
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