Covariate Balancing Propensity Score (CBPS)

Kosuke Imai

Princeton University

October 27 and 29, 2014
Seminars at Laval University and University of Montreal Joint work with Marc Ratkovic and Christian Fong

References

(1) Main Paper:
"Covariate Balancing Propensity Score." (2014). Journal of the Royal Statistical Society, Series B, Vol. 76, No. 1, pp. 243-263.
(2) Extensions:
(1) Non-binary treatments: "Covariate Balancing Propensity Score for General Treatment Regimes." working paper
(2) Longitudinal data: "Robust Estimation of Inverse Probability Weights for Marginal Structural Models." Journal of the American Statistical Association, Forthcoming.
(3) Software: CBPS: R Package for Covariate Balancing Propensity Score available for download at the CRAN

These and other related materials available at
http://imai.princeton.edu

Motivation

- Causal inference is a central goal of scientific research
- Randomized experiments are not always possible \rightsquigarrow Causal inference in observational studies
- Experiments often lack external validity
\rightsquigarrow Need to generalize experimental results to a target population
- Importance of statistical methods to adjust for confounding factors
- Distinction between observed and unobserved confounders

Overview of the Talk

(1) Review: Propensity score

- propensity score is a covariate balancing score
- matching and weighting methods
(2) Problem: Propensity score tautology
- sensitivity to model misspecification
- adhoc specification searches
(3) Solution: Covariate balancing propensity score (CBPS)
- Estimate propensity score so that covariate balance is optimized
(4) Evidence: Reanalysis of two prominent critiques
- Improved performance of propensity score weighting and matching
(5) Software: R package CBPS
(6) Extension: Non-binary treatments

Propensity Score

- Setup:
- $T_{i} \in\{0,1\}$: binary treatment
- X_{i} : pre-treatment covariates
- $\left(Y_{i}(1), Y_{i}(0)\right)$: potential outcomes
- $Y_{i}=Y_{i}\left(T_{i}\right)$: observed outcomes
- Definition: conditional probability of treatment assignment

$$
\pi\left(X_{i}\right)=\operatorname{Pr}\left(T_{i}=1 \mid X_{i}\right)
$$

- Balancing property (without assumption):

$$
T_{i} \Perp X_{i} \mid \pi\left(X_{i}\right)
$$

Rosenbaum and Rubin (1983)

- Assumptions:
(1) Overlap:

$$
0<\pi\left(X_{i}\right)<1
$$

(2) Unconfoundedness:

$$
\left\{Y_{i}(1), Y_{i}(0)\right\} \Perp T_{i} \mid X_{i}
$$

- Propensity score as a dimension reduction tool:

$$
\left\{Y_{i}(1), Y_{i}(0)\right\} \Perp T_{i} \mid \pi\left(X_{i}\right)
$$

- But, propensity score must be estimated (more on this later)

Use of Propensity Score for Causal Inference

- Matching
- Subclassification
- Weighting (Horvitz-Thompson):

$$
\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{T_{i} Y_{i}}{\hat{\pi}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) Y_{i}}{1-\hat{\pi}\left(X_{i}\right)}\right\}
$$

where weights are often normalized

- Doubly-robust estimators (Robins et al.):

$$
\frac{1}{n} \sum_{i=1}^{n}\left[\left\{\hat{\mu}\left(1, X_{i}\right)+\frac{T_{i}\left(Y_{i}-\hat{\mu}\left(1, X_{i}\right)\right)}{\hat{\pi}\left(X_{i}\right)}\right\}-\left\{\hat{\mu}\left(0, X_{i}\right)+\frac{\left(1-T_{i}\right)\left(Y_{i}-\hat{\mu}\left(0, X_{i}\right)\right)}{1-\hat{\pi}\left(X_{i}\right)}\right\}\right]
$$

- They have become standard tools for applied researchers

Propensity Score Tautology

- Propensity score is unknown
- Dimension reduction is purely theoretical: must model T_{i} given X_{i}
- Diagnostics: covariate balance checking
- In practice, adhoc specification searches are conducted
- Misspecification is possible especially for non-binary treatments
- Theory (Rubin et al.): ellipsoidal covariate distributions
\rightsquigarrow equal percent bias reduction
- Skewed covariates are common in applied settings
- Propensity score methods can be sensitive to misspecification

Kang and Schafer (2007, Statistical Science)

- Simulation study: the deteriorating performance of propensity score weighting methods when the model is misspecified
- Setup:
- 4 covariates X_{i}^{*} : all are i.i.d. standard normal
- Outcome model: linear model
- Propensity score model: logistic model with linear predictors
- Misspecification induced by measurement error:
- $X_{i 1}=\exp \left(X_{i 1}^{*} / 2\right)$
- $X_{i 2}=X_{i 2}^{*} /\left(1+\exp \left(X_{1 i}^{*}\right)+10\right)$
- $X_{i 3}=\left(X_{i 1}^{*} X_{i 3}^{*} / 25+0.6\right)^{3}$
- $X_{i 4}=\left(X_{i 1}^{*}+X_{i 4}^{*}+20\right)^{2}$
- Weighting estimators to be evaluated:
(1) Horvitz-Thompson
(2) Inverse-probability weighting with normalized weights
(3) Weighted least squares regression
(4) Doubly-robust least squares regression

Weighting Estimators Do Fine If the Model is Correct

Bias

Sample size	Estimator	GLM	True	GLM	True
(1) Both models correct					
$n=200$	HT	0.33	1.19	12.61	23.93
	IPW	-0.13	-0.13	3.98	5.03
	WLS	-0.04	-0.04	2.58	2.58
	DR	-0.04	-0.04	2.58	2.58
1000	HT	0.01	-0.18	4.92	10.47
	IPW	0.01	-0.05	1.75	2.22
	WLS	0.01	0.01	1.14	1.14
	DR	0.01	0.01	1.14	1.14

(2) Propensity score model correct

$n=200$	HT	-0.05	-0.14	14.39	24.28
	IPW	-0.13	-0.18	4.08	4.97
	WLS	0.04	0.04	2.51	2.51
	DR	0.04	0.04	2.51	2.51
$n=1000$	HT	-0.02	0.29	4.85	10.62
	IPW	0.02	-0.03	1.75	2.27
	WLS	0.04	0.04	1.14	1.14
	DR	0.04	0.04	1.14	1.14

Weighting Estimators are Sensitive to Misspecification

Bias

RMSE

Sample size	Estimator	GLM	True	GLM	True
(3) Outcome model correct					
$n=200$	HT	24.25	-0.18	194.58	23.24
	IPW	1.70	-0.26	9.75	4.93
	WLS	-2.29	0.41	4.03	3.31
	DR	-0.08	-0.10	2.67	2.58
$n=1000$	HT	41.14	-0.23	238.14	10.42
	IPW	4.93	-0.02	11.44	2.21
	WLS	-2.94	0.20	3.29	1.47
	DR	0.02	0.01	1.89	1.13
(4) Both models incorrect					
$n=200$	HT	30.32	-0.38	266.30	23.86
	IPW	1.93	-0.09	10.50	5.08
	WLS	-2.13	0.55	3.87	3.29
	DR	-7.46	0.37	50.30	3.74
$n=1000$	HT	101.47	0.01	2371.18	10.53
	IPW	5.16	0.02	12.71	2.25
	WLS	-2.95	0.37	3.30	1.47
	DR	-48.66	0.08	1370.91	1.81

Smith and Todd (2005, J. of Econometrics)

- LaLonde (1986; Amer. Econ. Rev.):
- Randomized evaluation of a job training program
- Replace experimental control group with another non-treated group
- Current Population Survey and Panel Study for Income Dynamics
- Many evaluation estimators didn't recover experimental benchmark
- Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):
- Apply propensity score matching
- Estimates are close to the experimental benchmark
- Smith and Todd (2005):
- Dehejia \& Wahba (DW)'s results are sensitive to model specification
- They are also sensitive to the selection of comparison sample

Propensity Score Matching Fails Miserably

- One of the most difficult scenarios identified by Smith and Todd:
- LaLonde experimental sample rather than DW sample
- Experimental estimate: \$886 (s.e. $=488$)
- PSID sample rather than CPS sample
- Evaluation bias:
- Conditional probability of being in the experimental sample
- Comparison between experimental control group and PSID sample
- "True" estimate $=0$
- Logistic regression for propensity score
- One-to-one nearest neighbor matching with replacement

Propensity score model	Estimates
Linear	-835
	(886)
Quadratic	-1620
	(1003)
Smith and Todd (2005)	-1910
	(1004)

Covariate Balancing Propensity Score

- Idea: Estimate the propensity score such that covariate balance is optimized
- Covariate balancing condition:

$$
\mathbb{E}\left\{\frac{T_{i} \widetilde{X}_{i}}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) \widetilde{X}_{i}}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0
$$

where $\widetilde{X}_{i}=f\left(X_{i}\right)$ is any vector-valued function

- Score condition from maximum likelihood:

$$
\mathbb{E}\left\{\frac{T_{i} \pi_{\beta}^{\prime}\left(X_{i}\right)}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) \pi_{\beta}^{\prime}\left(X_{i}\right)}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0
$$

Weighting to Balance Covariates

- Balancing condition: $\mathbb{E}\left\{\frac{T_{i} X_{i}}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) X_{i}}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0$

Generalized Method of Moments (GMM) Framework

- Just-identified CBPS: covariate balancing conditions alone
- Over-identified CBPS: combine them with score conditions
- GMM (Hansen 1982):

$$
\hat{\beta}_{\mathrm{GMM}}=\underset{\beta \in \Theta}{\operatorname{argmin}} \bar{g}_{\beta}(T, X)^{\top} \Sigma_{\beta}(T, X)^{-1} \bar{g}_{\beta}(T, X)
$$

where

$$
\bar{g}_{\beta}(T, X)=\frac{1}{N} \sum_{i=1}^{N} \underbrace{\binom{\text { score condition }}{\text { balancing condition }}}_{g_{\beta}\left(T_{i}, X_{i}\right)}
$$

- "Continuous updating" GMM estimator for Σ

CBPS Makes Weighting Methods Work Better

Bias

Estimator logit CBPS1 CBPS2 True

RMSE

logit CBPS1 CBPS2 True

(3) Outcome model correct									
	HT	24.25	1.09	-5.42	-0.18	194.58	5.04	10.71	23.24
$n=200$	IPW	1.70	-1.37	-2.84	-0.26	9.75	3.42	4.74	4.93
	WLS	-2.29	-2.37	-2.19	0.41	4.03	4.06	3.96	3.31
	DR	-0.08	-0.10	-0.10	-0.10	2.67	2.58	2.58	2.58
$n=1000$	HT	41.14	-2.02	2.08	-0.23	238.14	2.97	6.65	10.42
	IPW	4.93	-1.39	-0.82	-0.02	11.44	2.01	2.26	2.21
	WLS	-2.94	-2.99	-2.95	0.20	3.29	3.37	3.33	1.47
	DR	0.02	0.01	0.01	0.01	1.89	1.13	1.13	1.13

(4) Both models incorrect

	HT	30.32	1.27	-5.31	-0.38	266.30	5.20	10.62	23.86
$n=200$	IPW	1.93	-1.26	-2.77	-0.09	10.50	3.37	4.67	5.08
	WLS	-2.13	-2.20	-2.04	0.55	3.87	3.91	3.81	3.29
	DR	-7.46	-2.59	-2.13	0.37	50.30	4.27	3.99	3.74
$n=1000$	HT	101.47	-2.05	1.90	0.01	2371.18	3.02	6.75	10.53
	IPW	5.16	-1.44	-0.92	0.02	12.71	2.06	2.39	2.25
	WLS	-2.95	-3.01	-2.98	0.19	3.30	3.40	3.36	1.47
	DR	-48.66	-3.59	-3.79	0.08	1370.91	4.02	4.25	1.81

CBPS Sacrifices Likelihood for Better Balance

Likelihood-Balance Tradeoff

Revisiting Smith and Todd (2005)

- Evaluation bias: "true" bias $=0$
- CBPS improves propensity score matching across specifications and matching methods
- However, specification test rejects the null

	1-to-1 Nearest Neighbor			Optimal 1-to- N Nearest Neighbor		
Specification	GLM	CBPS1	CBPS2	GLM	CBPS1	CBPS2
Linear	-1209.15	-654.79	-505.15	-1209.15	-654.79	-130.84
	(1426.44)	(1247.55)	(1335.47)	(1426.44)	(1247.55)	(1335.47)
Quadratic	-1439.14	-955.30	-216.73	-1234.33	-175.92	-658.61
	(1299.05)	(1496.27)	(1285.28)	(1074.88)	(943.34)	(1041.47)
Smith \& Todd	-1437.69	-820.89	-640.99	-1229.81	-826.53	-464.06
	(1256.84)	(1229.63)	(1757.09)	(1044.15)	(1179.73)	(1130.73)

Comparison with the Experimental Benchmark

- LaLonde, Dehejia and Wahba, and others did this comparison
- Experimental estimate: $\$ 866$ (s.e. $=488$)
- LaLonde+PSID pose a challenge: e.g., GenMatch -571 (1108)

	1-to-1		Nearest Neighbor	Optimal 1-to- N Nearest Neighbor		
Specification	GLM	CBPS1	CBPS2	GLM	CBPS1	CBPS2
Linear	-304.92	423.30	183.67	-211.07	423.30	138.20
	(1437.02)	(1295.19)	(1240.79)	(1201.49)	(1110.26)	(1161.91)
Quadratic	-922.16	239.46	1093.13	-715.54	307.51	185.57
	(1382.38)	(1284.13)	(1567.33)	(1145.82)	(1158.06)	(1247.99)
Smith \& Todd	-734.49	-269.07	423.76	-439.54	-617.68	690.09
	(1424.57)	(1711.66)	(1404.15)	(1259.28)	(1438.86)	(1288.68)

Software: R Package CBPS

```
## upload the package
library("CBPS")
## load the LaLonde data
data(LaLonde)
## Estimate ATT weights via CBPS
fit <- CBPS(treat ~ age + educ + re75 + re74 +
                                    I(re75==0) + I(re74==0),
data = LaLonde, ATT = TRUE)
summary(fit)
## matching via MatchIt
library(MatchIt)
## one to one nearest neighbor with replacement
m.out <- matchit(treat ~ 1, distance = fitted(fit),
                                    method = "nearest", data = LaLonde,
                                    replace = TRUE)
summary(m.out)
```


Extensions to Other Causal Inference Settings

- Propensity score methods are widely applicable
- Thus, CBPS is also widely applicable
- Extensions of propensity score to general treatment regimes
- Weighting (e.g., Imbens, 2000; Robins et al., 2000)
- Subclassification (e.g., Imai \& van Dyk, 2004)
- Regression (e.g., Hirano \& Imbens, 2004)
- But, propensity score is mostly applied to binary treatment
- All existing methods assume correctly estimated propensity score
- No reliable methods to estimate generalized propensity score
- Harder to check balance across a non-binary treatment
- Many researchers dichotomize the treatment
- Estimate the generalized propensity score such that covariate is balanced across all treatment groups

Two Motivating Examples

(1) Effect of education on political participation

- Education is assumed to play a key role in political participation
- T_{i} : 3 education levels (graduated from college, attended college but not graduated, no college)
- Original analysis \rightsquigarrow dichotomization (some college vs. no college)
- Propensity score matching
- Critics employ different matching methods
(2) Effect of advertisements on campaign contributions
- Do TV advertisements increase campaign contributions?
- T_{i} : Number of advertisements aired in each zip code
- ranges from 0 to 22,379 advertisements
- Original analysis \rightsquigarrow dichotomization (over 1000 vs. less than 1000)
- Propensity score matching followed by linear regression with an original treatment variable

Covariates are Not Balanced for Original Treatment

Kam and Palmer

Covariates are Not Balanced for Original Treatment

Urban and Niebler

CBPS for a Multi-valued Treatment

- Consider a 3 treatment value case as in our motivating example
- Generalized propensity score:
(1) $\pi_{\beta}^{1}\left(X_{i}\right)=\operatorname{Pr}\left(Y_{i}=1 \mid X_{i}\right)$
(2) $\pi_{\beta}^{2}\left(X_{i}\right)=\operatorname{Pr}\left(Y_{i}=2 \mid X_{i}\right)$
- Standard estimation: multinomial logit regression
- Sample balance conditions with orthogonalized contrasts:

$$
\bar{g}_{\beta}(T, X)=\frac{1}{N} \sum_{i=1}^{N}\binom{\frac{\mathbf{1}\left\{T_{i}=1\right\}}{\pi_{\beta}^{1}\left(X_{i}\right)}-\frac{\mathbf{1}\left\{T_{i}=2\right\}}{\pi_{\beta}^{2}\left(X_{i}\right)}}{\frac{\mathbf{1}\left\{T_{i}=1\right\}}{\pi_{\beta}^{1}\left(X_{i}\right)}+\frac{1\left\{T_{i}=2\right\}}{\pi_{\beta}^{2}\left(X_{i}\right)}-2 \frac{1}{1-\pi_{\beta}^{1}\left(X_{i}\right)-\pi_{\beta}^{2}\left(X_{i}\right)}} X_{i}
$$

- GMM estimation as before

CBPS for a Continuous Treatment

- Generalized propensity score: $f\left(T_{i} \mid X_{i}\right)$
- Standard model: linear regression
- The stabilized weights (Robins et al.):

$$
\frac{f\left(T_{i}\right)}{f\left(T_{i} \mid X_{i}\right)}
$$

- Covariate balancing condition:

$$
\begin{aligned}
\mathbb{E}\left(\frac{f\left(T_{i}^{*}\right)}{f\left(T_{i}^{*} \mid X_{i}^{*}\right)} T_{i}^{*} X_{i}^{*}\right) & =\int\left\{\int \frac{f\left(T_{i}^{*}\right)}{f\left(T_{i}^{*} \mid X_{i}^{*}\right)} T_{i}^{*} d F\left(T_{i}^{*} \mid X_{i}^{*}\right)\right\} X_{i}^{*} d F\left(X_{i}^{*}\right) \\
& =\mathbb{E}\left(T_{i}^{*}\right) \mathbb{E}\left(X_{i}^{*}\right)=0 .
\end{aligned}
$$

where T_{i}^{*} and X_{i}^{*} are centered versions of T_{i} and X_{i}

- Again, estimate the generalized propensity score such that covariate balance is optimized

Back to the Education Example: CBPS vs. ML

- CBPS achieves better covariate balance

Graduated vs.
Some College

CBPS Avoids Extremely Large Weights

Some College

Graduated

CBPS Balances Well for a Dichotomized Treatment

Empirical Results: Graduation Matters, Efficiency Gain

Onto the Advertisement Example

Empirical Finding: Some Effect of Advertisement

Concluding Remarks

- Numerous advances in generalizing propensity score methods to non-binary treatments
- Yet, many applied researchers don't use these methods and dichotomize non-binary treatments
- We offer a simple method to improve the estimation of propensity score for general treatment regimes
- Open-source R package: CBPS: Covariate Balancing Propensity Score available at CRAN
- Ongoing extensions:
(1) nonparametric estimation via empirical likelihood
(2) generalizing instrumental variables estimates
(3) spatial treatments

