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Exciting Paper that Opens Up New Research Frontiers

@ Causal heterogeneity

e Existing work: heterogeneous effects of a treatment
e This work: effects of heterogenous treatments

@ Causal inference and machine learning

o Existing work: estimation of propensity score, heterogenous effects
e This work: control for unobserved confounding

Thought-provoking paper on an extremely important topic
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The Deconfounder Method

@ Setup:
e multiple causes: A; = (Ai1, Ai2, . .., Aim)
e unobserved multi-cause confounders: A; L Yi(a) | U;
@ no unobserved single-cause confounder:

@ Methodology:
@ Factor model

P(Ai, A Am) = / (@) [[ P(Am | Z:) dZi

j=1
@ Substitute confounder
E{Yi(a) - Yi(a')} = E{E(Y;|Ai=a,Z))-E(Y;|A;=a’,Z)}

@ Advantages:

@ checkable assumption about unobserved confounders
@ easy to implement
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Assumptions

substitute multi-cause Q S U TVA
f .
e e @ No single-cause confounder
“ - AjlLY(a)

~= This should be
AillYi(a) |U;, Aj LAy | U;

o @O @ O O © Overlap:

p(Aj € A|Z;) > 0 for all sets

All A12 Azm Yi(a)
A with p(A) >0
. potential
. single-cause
assigned causes confounder cutcgme
function

@ Z;is a function of causes ~~ different from usual propensity score
@ factor model: Z; = A(A;) — h(A;) as the sample size grows
~+ overlap assumption might be difficult to satisfy
Q@ Aj causally affects Aj
~ factor model no longer applicable, must know causal ordering
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Nonparametric Identification

@ Two-step proof:
@ existence of factor model for multiple causes (Proposition 5)
@ nonparametric identification of causal effects given the consistency
of substitute confounders (Theorem 6)

@ D’Amour (2019)
@ provides an example where many factor models are compatible
with observed data, yielding different causal effect estimates
@ shows even the existence of unique factor model does not
guarantee identification
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Mechanics of the Substitute Confounder

@ Substitute confounder has the property: A;1LU; | Z;

/Y a,U; = u)p(U; = u)du
~ [ [ vi(a.u) pu; = u |2 = 2)p(z ~ 2)dudz
— [ [ vi(a.u) (U, —u| A — 2.2~ 2)p(z, = 2)cuotz
_ /E(Y, A —a,Z, — 2)p(Z; — 2)dz

@ Implied estimator:

— 1 — ~ - N
E{Yi(a,U)} = > E(Yi|Aj=a.Z=Z) where Z; = h(A))
i=1
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The Support Condition of the Substitute Confounder

@ The support of p(Z;) must be the same as that of p(Z; | A; = a)
~ otherwise, we can’t compute E(Y; | A; = a,Z; = z) for some z
e Equivalent to the support condition p(A; =a | Z; =2z) > 0 foralla
and z such that p(A; = a) > 0 and p(Z; = z) > 0.
e Given A, Z; = h(A)) is constant

@ Average causal effect of changing the first k (k < m) causes
(Theorem 7)
e Requires the calculation of E(Y; | Aj 1.k = @14, Z; = Z)
e The same support condition problem applies

e Example Z; = )" o;A; violates the support condition when Aj;’s are

binary
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Different Assumptions?

@ “D’Amour (2019) do not make the same assumptions as in
Theorem 6” (p. 54)

@ The outcome is separable:

E(Yi(a) | Zi=2) = fi(a) + £(2)
o Then, E(vi(a) |7 ~2) - ( (@) 12/ =2) = fi(a) - A(a)
@ But, in large sample, Z; = h(A;) ~ f:(z) = f:(h(a)) separability does

not hold in general
@ The substitute confounder is a piece-wise constant function of the
(continuous) causes, Vafy(a) = 0 where p(Z; | A; = a,0) = d,(a)
@ Changing a — a’ does not change £(z)
@ But again, in large sample, £;(z) = f:(h(a)) and so this assumes
away confounding issue all together

@ Binary causes
@ Separability: E(Yj(a) — Yi(a') | Z; =2) = fi(a—a') + (2)
@ There exist @new, @y St Anew — @, =a—a’ A f(anew) = f(ahew)
~» the same problems as above apply here
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Connection to the Control Function in Econometrics

@ Control function is a variable that, when adjusted for, renders a
treatment variable exogenous ~+ deconfounder!
@ But, it requires instrumental or proxy variable W;
@ Classic two-stage least squares:
@ Regress A; on W; and obtain residuals ¢
@ Regress Y;on A; and &
@ Nonparametric identification of triangular system (Imbens and
Newey, 2009):

Yi = 9(Ai¢€)
Ai = h(W;,n)

where W, 1l (¢;,n;) and h(-,-) is strictly monotonic in a continuous
disturbance 7;
e Control function is V; = Faw(Ai, W))
e Even in this case, for the identification of causal effects, we require
the support of p(V;) is the same as that of p(V; | A;)
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A Possible Parametric Strategy

@ Assume that the joint distribution of (A;, U;) is uniquely identifiable
e If U; is binary and we have 3 binary causes A; = (Aj1, Az, Aiz) such
that A; is independent of A given U;, then the joint distribution of
(U;, A)) is identifiable up to label switching
o Kruskal (1977) for general results on discrete variables and Allman
et al (2009) and Stanghellini et al. (2013) for recent generalization
to correlated variables

© Assume a parametric outcome model:

Yi = Zﬁkfk ) +79(Ui)

where f(-) and g(U;) are pre-specified functions.
e If v is known, the average treatment effects are identifiable so long
as (fy,..., fx) are linearly independent
e If v is unknown, the average treatment effects are identifiable so
long as (f1,. .., fx, E{g(U; | A)}) are linearly independent
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Nonparametric Strategy Using Instrumental Variables

@ Cox and Donnely (2011):

if an issue can be addressed nonparametrically then it will often
be better to tackle it parametrically; however, if it cannot be
resolved nonparametrically, then it is usually dangerous to resolve
it parametrically.

@ Nonparametric identification via instrumental variables:

W A Ap— Y

\_/

@ The separable outcome model:
Yi = g(A)+ U

with the instrumental variable satisfying E(U; | W;) = 0
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@ All binary causes

ai,...,am=0,1

XPI’(A,‘1 = a1,...,A,-m:am] VV,)

where W; must have more than 2™ levels

@ All continuous causes
B(Y W) = [gar.....an)
Xp(A,'1 =a,...,Am=am ‘ W,-)da1 - dam.

where for any function g, if E{g(Aj1,...,Am) | Wi = w} =0 for all
w, then g(ay,...,am) =0forall ay,...,an.
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Concluding Remarks

@ The Wang and Blei paper opens up new research frontiers:

e causal inference with many causes
@ use of factor models in causal inference

@ Key insight: factorization ~~ deconfounder (checkable)
@ Difficulty: the support condition for the substitute confounder

@ Two possible ways to make progress:

@ parametric strategies to identify factor and outcome models
@ nonparametric strategies based on instrumental and proxy
variables ~~ connections to the control function method
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