Design and Analysis of Two-Stage Randomized Experiments

Kosuke Imai

Department of Government and Department of Statistics Harvard University

Joint Statistical Meetings

July 29, 2019

Joint work with Zhichao Jiang and Anup Malani

- Causal inference revolution over the last three decades
- The first half of this revolution \rightsquigarrow no interference between units

- In social sciences, interference is the rule rather than the exception
- How should we account for spillover effects?

• Experimental design solution:

two-stage randomized experiments (Hudgens and Halloran, 2008)

Empirical Motivation: Indian Health Insurance Experiment

- 150 million people worldwide face financial catastrophe due to health spending $\rightsquigarrow 1/3$ live in India
- In 2008, Indian government introduced the national health insurance program (RSBY) to cover about 60 million poorest families
- The government wants to expand the RSBY to 500 million Indians
- What are financial and health impacts of this expansion?
- Do beneficiaries have spillover effects on non-beneficiaries?
- We conduct an RCT to evaluate the impact of expanding RSBY in the State of Karnakata

Study Design

- Sample: 10,879 households in 435 villages
- Experimental conditions:
 - Opportunity to enroll in RSBY essentially for free
 - Intervention
- Time line:
 - September 2013 February 2014: Baseline survey
 - 2 April May 2015: Enrollment
 - September 2016 January 2017: Midine survey

• Two stage randomization:

Mechanisms	Village prop.	Treatment	Control
High	50%	80%	20%
Low	50%	40%	60%

Causal Inference and Interference between Units

Q Causal inference without interference between units

- Potential outcomes: $Y_i(1)$ and $Y_i(0)$
- Observed outcome: $Y_i = Y_i(D_i)$
- Causal effect: $Y_i(1) Y_i(0)$

② Causal inference with interference between units

- Potential outcomes: $Y_i(d_1, d_2, \ldots, d_N)$
- Observed outcome: $Y_i = Y_i(D_1, D_2, \dots, D_N)$
- Causal effects:
 - Direct effect = $Y_i(D_i = 1, \mathbf{D}_{-i} = \mathbf{d}) Y_i(D_i = 0, \mathbf{D}_{-i} = \mathbf{d})$
 - Spillover effect = $Y_i(D_i = d, \mathbf{D}_{-i} = \mathbf{d}) Y_i(D_i = d, \mathbf{D}_{-i} = \mathbf{d}')$

Fundamental problem of causal inference ~> only one potential outcome is observed

What Happens if We Ignore Interference?

- Completely randomized experiment
 - Total of N units with N_1 treated units

•
$$\mathsf{Pr}(D_i=1)=N_1/N$$
 for all i

• Difference-in-means estimator is unbiased for the average direct effect:

$$\frac{1}{N} \sum_{i=1}^{N} \sum_{\mathbf{d}_{-i}} \{ Y_i(D_i = 1, \mathbf{D}_{-i} = \mathbf{d}_{-i}) \underbrace{\mathbb{P}(\mathbf{D}_{-i} = \mathbf{d}_{-i} \mid D_i = 1)}_{1/\binom{N-1}{N_1-1}} - Y_i(D_i = 0, \mathbf{D}_{-i} = \mathbf{d}_{-i}) \underbrace{\mathbb{P}(\mathbf{D}_{-i} = \mathbf{d}_{-i} \mid D_i = 0)}_{1/\binom{N-1}{N_1}} \}$$

• Bernoulli randomization (or large sample) simplifies the expression

$$\frac{1}{N2^{N-1}}\sum_{i=1}^{N}\sum_{\mathbf{d}_{-i}} \{Y_i(D_i = 1, \mathbf{D}_{-i} = \mathbf{d}_{-i}) - Y_i(D_i = 0, \mathbf{D}_{-i} = \mathbf{d}_{-i})\}$$

Cannot estimate spillover effects

Kosuke Imai (Harvard)

What about Cluster Randomized Experiment?

• Setup:

- Total of J clusters with J_1 treated clusters
- Total of N units: n_j units in cluster j
- Complete randomization of treatment across clusters
- All units are treated in a treated cluster
- No unit is treated in a control cluster
- Partial interference assumption:
 - No interference across clusters
 - Interference within a cluster is allowed

• Difference-in-means estimator is unbiased for the average total effect:

$$\frac{1}{N} \sum_{j=1}^{J} \sum_{i=1}^{n_j} \{ Y_{ij} (D_{1j} = 1, D_{2j} = 1, \dots, D_{n_j j} = 1) \\ - Y_{ij} (D_{1j} = 0, D_{2j} = 0, \dots, D_{n_j j} = 0) \}$$

• Cannot estimate spillover effects

Two-stage Randomized Experiments

- Individuals (households): i = 1, 2, ..., N
- Blocks (villages): $j = 1, 2, \dots, J$
- Size of block *j*: n_j where $N = \sum_{j=1}^{J} n_j$
- Binary treatment assignment mechanism: $A_j \in \{0,1\}$
- Binary encouragement to receive treatment: $Z_{ij} \in \{0,1\}$
- Binary treatment indicator: $D_{ij} \in \{0,1\}$
- Observed outcome: Y_{ij}
- Partial interference assumption: No interference across blocks
 - Potential treatment and outcome: $D_{ij}(\mathbf{z}_j)$ and $Y_{ij}(\mathbf{z}_j)$
 - Observed treatment and outcome: $D_{ij} = D_{ij}(\mathbf{Z}_j)$ and $Y_{ij} = Y_{ij}(\mathbf{Z}_j)$
- Number of potential values reduced from 2^N to 2^{n_j}

Intention-to-Treat Analysis: Causal Quantities of Interest

 Average outcome under the treatment Z_{ij} = z and the assignment mechanism A_j = a:

$$\overline{Y}_{ij}(z,a) = \sum_{\mathbf{z}_{-i,j}} Y_{ij}(Z_{ij} = z, \mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)$$

• <u>Average direct effect of encouragement on outcome</u>:

$$\mathsf{ADE}^{\mathbf{Y}}(a) = \frac{1}{N} \sum_{j=1}^{J} \sum_{i=1}^{n_j} \left\{ \overline{Y}_{ij}(1,a) - \overline{Y}_{ij}(0,a) \right\}$$

• <u>Average spillover effect</u> of <u>encouragement</u> on outcome:

$$\mathsf{ASE}^{Y}(z) = \frac{1}{N} \sum_{j=1}^{J} \sum_{i=1}^{n_j} \left\{ \overline{Y}_{ij}(z,1) - \overline{Y}_{ij}(z,0) \right\}$$

Horvitz-Thompson estimator for unbiased estimation

When Should We Use Two-stage Randomization?

- Do we care about spillover effects?
 - Yes \rightsquigarrow two-stage randomization
 - No
 - \bullet Interested in direct effects \rightsquigarrow individual randomization
 - \bullet Interested in total effects \rightsquigarrow cluster randomization
- Do we lose statistical power if there is no spillover effect?
 - variance of the difference-in-means estimator:

$$\frac{1-\rho}{J^2}\left\{\mathbb{V}(Y_{ij}(1))\sum_{a=0}^{1}\frac{J_a}{np_a}+\mathbb{V}(Y_{ij}(0))\sum_{a=0}^{1}\frac{J_a}{n(1-p_a)}\right\}-\frac{1-\rho}{Jn}\mathbb{V}(Y_{ij}(1)-Y_{ij}(0))$$

- large intracluster correlation coefficient \rightsquigarrow more efficient
- large variation in $p_a \rightsquigarrow$ less efficient
- trade-off between detection of spillover effects and statistical efficiency

Complier Average Direct Effect

- Goal: Estimate the treatment effect rather than the ITT effect
- Use randomized encouragement as an instrument
 - Monotonicity: $D_{ij}(Z_{ij} = 1) \ge D_{ij}(Z_{ij} = 0)$ • Exclusion restriction: $Y_{ii}(z_{ii}, d_{ii}) = Y_{ij}(z'_{ii}, d_{ii})$ for any z_{ii} and z'_{ii}
- Generalization to the case with spillover effects
 - Monotonicity: $D_{ij}(1, \mathbf{z}_{-i,j}) \ge D_{ij}(0, \mathbf{z}_{-i,j})$ for any $\mathbf{z}_{-i,j}$ Exclusion restriction: $Y_{ij}(\mathbf{z}_i, \mathbf{d}_i) = Y_{ij}(\mathbf{z}'_i, \mathbf{d}_i)$ for any \mathbf{z}_i and \mathbf{z}'_i
- Compliers: $C_{ij}(\mathbf{z}_{-i,j}) = \mathbf{1}\{D_{ij}(1, \mathbf{z}_{-i,j}) = 1, D_{ij}(0, \mathbf{z}_{-i,j}) = 0\}$
- <u>Complier average direct effect of encouragement</u> (CADE(*z*, *a*)):

$$\frac{\sum_{j=1}^{J} \sum_{i=1}^{n_j} \{ Y_{ij}(1, \mathbf{z}_{-i,j}) - Y_{ij}(0, \mathbf{z}_{-i,j}) \} C_{ij}(\mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)}{\sum_{j=1}^{J} \sum_{i=1}^{n_j} C_{ij}(\mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)}$$

We propose a consistent estimator of the CADE

Key Identification Assumption

• Two causal mechanisms:

- Z_{ij} affects Y_{ij} through D_{ij}
- Z_{ij} affects Y_{ij} through $\mathbf{D}_{-i,j}$
- Idea: if Z_{ij} does not affect D_{ij} , it should not affect Y_{ij} through $\mathbf{D}_{-i,j}$

Assumption (Restricted Interference for Noncompliers)

If a unit has $D_{ij}(1, \mathbf{z}_{-i,j}) = D_{ij}(0, \mathbf{z}_{-i,j}) = d$ for any given $\mathbf{z}_{-i,j}$, it must also satisfy $Y_{ij}(d, \mathbf{D}_{-i,j}(Z_{ij} = 1, \mathbf{z}_{-i,j})) = Y_{ij}(d, \mathbf{D}_{-i,j}(Z_{ij} = 0, \mathbf{z}_{-i,j}))$

Scenario I: No Spillover Effect of the Treatment Receipt on the Outcome

 $Y_{ij}(d_{ij}, \mathbf{d}_{-i,j}) = Y_{ij}(d_{ij}, \mathbf{d}'_{-i,j})$

Scenario II: No Spillover Effect of the Treatment Assignment on the Treatment Receipt

 $D_{ij}(z_{ij}, \mathbf{z}_{-i,j}) = D_{ij}(z_{ij}, \mathbf{z}'_{-i,j})$ (Kang and Imbens, 2016)

Scenario III: Limited Spillover Effect of the Treatment Assignment on the Treatment Receipt

$$f D_{ij}(1, \mathbf{z}_{-i,j}) = D_{ij}(0, \mathbf{z}_{-i,j}) \text{ for any given } \mathbf{z}_{-i,j}, \\ \text{then } D_{i'j}(1, \mathbf{z}_{-i,j}) = D_{i'j}(0, \mathbf{z}_{-i,j}) \text{ for all } i' \neq i$$

Kosuke Imai (Harvard)

Two-Stage Randomized Experiments

Identification and Consistent Estimation

Identification: monotonicity, exclusion restriction, restricted interference for noncompliers

$$\lim_{n_j \to \infty} \mathsf{CADE}(z, a) = \lim_{n_j \to \infty} \frac{\mathsf{ADE}^{Y}(a)}{\mathsf{ADE}^{D}(a)}$$

 Consistent estimation: additional restriction on interference (e.g., Savje et al.)

$$\frac{\widehat{\mathsf{ADE}}^{Y}(a)}{\widehat{\mathsf{ADE}}^{D}(a)} \xrightarrow{p} \lim_{n_{j} \to \infty, J \to \infty} \mathsf{CADE}(z, a)$$

Connection to the Two-stage Least Squares Estimator

• The model:

$$Y_{ij} = \sum_{a=0}^{1} \alpha_a \mathbf{1} \{A_j = a\} + \sum_{a=0}^{1} \underbrace{\beta_a}_{CADE} D_{ij} \mathbf{1} \{A_j = a\} + \epsilon_{ij}$$
$$D_{ij} = \sum_{a=0}^{1} \gamma_a \mathbf{1} \{A_j = a\} + \sum_{a=0}^{1} \delta_a Z_{ij} \mathbf{1} \{A_j = a\} + \eta_{ij}$$

• Weighted two-stage least squares estimator:

$$w_{ij} = \frac{1}{\Pr(A_j)\Pr(Z_{ij} \mid A_j)}$$

- Transforming the outcome and treatment: multiplying them by $n_j J/N$
- Randomization-based variance is equal to the weighted average of cluster-robust HC2 $\left(1 \frac{J_a}{J}\right)$ and individual-robust HC2 variances $\left(\frac{J_a}{J}\right)$

Results: Indian Health Insurance Experiment

• A household is more likely to enroll in RSBY if a large number of households are given the opportunity

Average Spillover Effects	Treatment	Control
Individual-weighted	0.086 (s.e. = 0.053)	0.045 (s.e. = 0.028)
Block-weighted	$0.044 \ (s.e. = 0.018)$	$0.031 \ (s.e. = 0.021)$

• Households will have greater hospitalization expenditure if few households are given the opportunity

Complier Average Direct Effects	High	Low
Individual-weighted	-1649 (s.e. $= 1061$)	1984 (s.e. $= 1215$)
Block-weighted	-485 (s.e. $= 1258$)	3752 (s.e. = 1652)

Concluding Remarks

- In social science research,
 - **(**) people interact with each other \rightsquigarrow interference
 - 2 people don't follow instructions \rightsquigarrow noncompliance
- Two-stage randomized controlled trials:
 - I randomize assignment mechanisms across clusters
 - 2 randomize treatment assignment within each cluster
- Spillover effects as causal quantities of interest
- Our contributions:
 - Identification condition for complier average direct effects
 - Onsistent estimator for CADE and its variance
 - Onnections to regression and instrumental variables
 - Application to the India health insurance experiment
 - Implementation as part of R package experiment

Send comments and suggestions to Imai@Harvard.Edu Other research at https://imai.fas.harvard.edu