Covariate Balancing Propensity Score for General Treatment Regimes

Kosuke Imai

Princeton University

2014 Joint Statistical Meetings

August 7, 2014

Joint work with Christian Fong

Motivation

- Central role of propensity score in causal inference
 - Adjusting for observed confounding in observational studies
 - Matching and inverse-probability weighting methods
- Extensions of propensity score to general treatment regimes
 - Weighting (e.g., Imbens, 2000; Robins et al., 2000)
 - Subclassification (e.g., Imai & van Dyk, 2004)
 - Regression (e.g., Hirano & Imbens, 2004)
- But, propensity score is mostly applied to binary treatment
 - All available methods assume correctly estimated propensity score
 - No reliable methods to estimate generalized propensity score
 - Harder to check balance across a non-binary treatment
 - Many researchers dichotomize the treatment

Contributions of the Paper

- Generalize the covariate balancing propensity score (CBPS; Imai & Ratkovic, 2014, JRSSB)
- Key idea: estimate the generalized propensity score such that the association between treatment and covariates is reduced
 - Multi-valued treatment (3 and 4 categories)
 - Continuous treatment
- Useful especially because checking covariate balance is harder for non-binary treatment
- Facilitates the use of generalized propensity score methods

The Setup

- $T_i \in \mathcal{T}$: non-binary treatment
- X_i: pre-treatment covariates
- $Y_i(t)$: potential outcomes
- Strong ignorability:

$$T_i \perp \!\!\!\perp Y_i(t) \mid X_i \text{ and } p(T_i = t \mid X_i) > 0 \text{ for all } t \in \mathcal{T}$$

- $p(T_i \mid X_i)$: generalized propensity score
- \widetilde{T}_i : dichotomized treatment
 - $\widetilde{T}_i = 1$ if $T_i \in \mathcal{T}_1$
 - $\tilde{T}_i = 0$ if $T_i \in \mathcal{T}_0$
 - $\mathcal{T}_0 \cap \mathcal{T}_1 = \emptyset$ and $\mathcal{T}_0 \cup \mathcal{T}_1 = \mathcal{T}$
- What is the problem of dichotomizing a non-binary treatment?

The Problems of Dichotomization

Under strong ignorability,

$$\mathbb{E}(Y_i \mid \widetilde{T}_i = 1, X_i) - \mathbb{E}(Y_i \mid \widetilde{T}_i = 0, X_i)$$

$$= \int_{\mathcal{T}_1} \mathbb{E}(Y_i(t) \mid X_i) p(T_i = t \mid \widetilde{T}_i = 1, X_i) dt$$

$$- \int_{\mathcal{T}_0} \mathbb{E}(Y_i(t) \mid X_i) p(T_i = t \mid \widetilde{T}_i = 0, X_i) dt$$

- Aggregation via $p(T_i \mid \widetilde{T}_i, X_i)$
 - some substantive insights get lost
 - external validity issue
- Checking covariate balance: $\widetilde{T}_i \perp \!\!\! \perp X_i$ does not imply $T_i \perp \!\!\! \perp X_i$

Two Motivating Examples

- Effect of education on political participation
 - Education is assumed to play a key role in political participation
 - *T_i*: 3 education levels (graduated from college, attended college but not graduated, no college)
 - Original analysis → dichotomization (some college vs. no college)
 - Propensity score matching
 - Critics employ different matching methods
- Effect of advertisements on campaign contributions
 - Do TV advertisements increase campaign contributions?
 - T_i: Number of advertisements aired in each zip code
 - ranges from 0 to 22,379 advertisements
 - Original analysis → dichotomization (over 1000 vs. less than 1000)
 - Propensity score matching followed by linear regression with an original treatment variable

Balancing Covariates for a Dichotomized Treatment

Kam and Palmer

May Not Balance Covariates for the Original Treatment

Urban and Niebler

Propensity Score for a Multi-valued Treatment

- Consider a multi-valued treatment: $T = \{0, 1, ..., J 1\}$
- Standard approach: MLE with multinomial logistic regression

$$\pi^{j}(X_{i}) = \Pr(T_{i} = j \mid X_{i}) = \frac{\exp(X_{i}^{\top}\beta_{j})}{1 + \exp\left(\sum_{j'=1}^{J} X_{i}^{\top}\beta_{j'}\right)}$$

where
$$\beta_0 = 0$$
 and $\sum_{j=0}^{J-1} \pi^j(X_i) = 1$

Covariate balancing conditions with inverse-probability weighting:

$$\mathbb{E}\left(\frac{\mathbf{1}\{T_i=0\}X_i}{\pi_{\beta}^0(X_i)}\right) = \mathbb{E}\left(\frac{\mathbf{1}\{T_i=1\}X_i}{\pi_{\beta}^1(X_i)}\right) = \cdots = \mathbb{E}\left(\frac{\mathbf{1}\{T_i=J-1\}X_i}{\pi_{\beta}^{J-1}(X_i)}\right)$$

which equals $\mathbb{E}(X_i)$

• Idea: estimate $\pi^j(X_i)$ to optimize the balancing conditions

CBPS for a Multi-valued Treatment

- Consider a 3 treatment value case as in our motivating example
- Sample balance conditions with orthogonalized contrasts:

$$\bar{g}_{\beta}(T,X) \; = \; \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} 2 \frac{1\{T_{i}=0\}}{\pi_{\beta}^{0}(X_{i})} - \frac{1\{T_{i}=1\}}{\pi_{\beta}^{1}(X_{i})} - \frac{1\{T_{i}=2\}}{\pi_{\beta}^{2}(X_{i})} \\ \frac{1\{T_{i}=1\}}{\pi_{\beta}^{1}(X_{i})} - \frac{1\{T_{i}=2\}}{\pi_{\beta}^{2}(X_{i})} \end{pmatrix} X_{i}$$

Generalized method of moments (GMM) estimation:

$$\hat{\beta}_{\mathrm{CBPS}} = \underset{\beta}{\operatorname{argmin}} \bar{g}_{\beta}(T, X) \Sigma_{\beta}(T, X)^{-1} \bar{g}_{\beta}(T, X)$$

where $\Sigma_{\beta}(T, X)$ is the covariance of sample moments

Score Conditions as Covariate Balancing Conditions

• Balancing the first derivative across treatment values:

$$\frac{1}{N} \sum_{i=1}^{N} s_{\beta}(T_{i}, X_{i})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1\{T_{i}=1\}}{\pi_{\beta}^{1}(X_{i})} - \frac{1\{T_{i}=0\}}{\pi_{\beta}^{0}(X_{i})} \right) \frac{\partial}{\partial \beta_{1}} \pi_{\beta}^{1}(X_{i}) + \left(\frac{1\{T_{i}=2\}}{\pi_{\beta}^{2}(X_{i})} - \frac{1\{T_{i}=0\}}{\pi_{\beta}^{0}(X_{i})} \right) \frac{\partial}{\partial \beta_{1}} \pi_{\beta}^{2}(X_{i}) \right) \left(\frac{1\{T_{i}=1\}}{\pi_{\beta}^{1}(X_{i})} - \frac{1\{T_{i}=0\}}{\pi_{\beta}^{0}(X_{i})} \right) \frac{\partial}{\partial \beta_{2}} \pi_{\beta}^{1}(X_{i}) + \left(\frac{1\{T_{i}=2\}}{\pi_{\beta}^{2}(X_{i})} - \frac{1\{T_{i}=0\}}{\pi_{\beta}^{0}(X_{i})} \right) \frac{\partial}{\partial \beta_{2}} \pi_{\beta}^{2}(X_{i}) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{1}\{T_{i}=1\} - \pi_{\beta}^{1}(X_{i}) \right) X_{i}$$

Can be added to CBPS as over-identifying restrictions

Extension to More Treatment Values

- The same idea extends to a treatment with more values
- For example, consider a four-category treatment
- Sample moment conditions based on orthogonalized contrasts:

$$\bar{g}_{\beta}(T_{i}, X_{i}) = \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} \frac{1\{T_{i}=0\}}{\pi_{\beta}^{0}(X_{i})} + \frac{1\{T_{i}=1\}}{\pi_{\beta}^{1}(X_{i})} - \frac{1\{T_{i}=2\}}{\pi_{\beta}^{2}(X_{i})} - \frac{1\{T_{i}=3\}}{\pi_{\beta}^{3}(X_{i})} \\ \frac{1\{T_{i}=0\}}{\pi_{\beta}^{0}(X_{i})} - \frac{1\{T_{i}=1\}}{\pi_{\beta}^{1}(X_{i})} - \frac{1\{T_{i}=2\}}{\pi_{\beta}^{2}(X_{i})} + \frac{1\{T_{i}=3\}}{\pi_{\beta}^{3}(X_{i})} \\ -\frac{1\{T_{i}=0\}}{\pi_{\beta}^{0}(X_{i})} + \frac{1\{T_{i}=1\}}{\pi_{\beta}^{1}(X_{i})} - \frac{1\{T_{i}=2\}}{\pi_{\beta}^{2}(X_{i})} + \frac{1\{T_{i}=3\}}{\pi_{\beta}^{3}(X_{i})} \end{pmatrix} X_{i}$$

 A similar orthogonalization strategy can be applied to marginal structural models (Imai & Ratkovic, 2014)

Propensity Score for a Continuous Treatment

• The stabilized weights:

$$\frac{f(T_i)}{f(T_i\mid X_i)}$$

Covariate balancing condition:

$$\mathbb{E}\left(\frac{f(T_{i}^{*})}{f(T_{i}^{*}\mid X_{i}^{*})}T_{i}^{*}X_{i}^{*}\right) = \int \left\{\int \frac{f(T_{i}^{*})}{f(T_{i}^{*}\mid X_{i}^{*})}T_{i}^{*}dF(T_{i}^{*}\mid X_{i}^{*})\right\}X_{i}^{*}dF(X_{i}^{*})$$

$$= \mathbb{E}(T_{i}^{*})\mathbb{E}(X_{i}^{*}) = 0.$$

where T_i^* and X_i^* are centered versions of T_i and X_i

 Again, estimate the generalized propensity score such that covariate balance is optimized

CBPS for a Continuous Treatment

Standard approach (e.g., Robins et al. 2000):

$$T_i^* \mid X_i^* \stackrel{\text{indep.}}{\sim} \mathcal{N}(X_i^{\top} \beta, \sigma^2)$$
 $T_i^* \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$

where further transformation of T_i can make these distributional assumptions more credible

• Sample covariate balancing conditions:

$$\bar{g}_{\theta}(T,X) = \begin{pmatrix} \bar{s}_{\theta}(T,X) \\ \bar{w}_{\theta}(T,X) \end{pmatrix} = \frac{1}{N} \sum_{i=1}^{N} \begin{pmatrix} \frac{1}{\sigma^{2}} (T_{i}^{*} - X_{i}^{*\top} \beta) X_{i}^{*} \\ -\frac{1}{2\sigma^{2}} \left\{ 1 - \frac{1}{\sigma^{2}} (T_{i}^{*} - X_{i}^{*\top} \beta)^{2} \right\} \\ \exp \left[\frac{1}{2\sigma^{2}} \left\{ -2X_{i}^{*\top} \beta + (X_{i}^{*\top} \beta)^{2} \right\} \right] T_{i}^{*} X_{i}^{*} \end{pmatrix}$$

GMM estimation: covariance matrix can be analytically calculated

Back to the Education Example: CBPS vs. ML

CBPS achieves better covariate balance

CBPS Avoids Extremely Large Weights

CBPS Balances Well for a Dichotomized Treatment

Empirical Results: Graduation Matters, Efficiency Gain

Onto the Advertisement Example

Empirical Finding: Little Effect of Advertisement

Concluding Remarks

- Numerous advances in generalizing propensity score methods to non-binary treatments
- Yet, many applied researchers don't use these methods and dichotomize non-binary treatments
- We offer a simple method to improve the estimation of propensity score for general treatment regimes
- Open-source R package: CBPS: Covariate Balancing Propensity Score available at CRAN
- Future extensions: nonparametric estimation, spatial treatments