Covariate Balancing Propensity Score for General Treatment Regimes

Kosuke Imai

Princeton University
2014 Joint Statistical Meetings
August 7, 2014
Joint work with Christian Fong

Motivation

- Central role of propensity score in causal inference
- Adjusting for observed confounding in observational studies
- Matching and inverse-probability weighting methods
- Extensions of propensity score to general treatment regimes
- Weighting (e.g., Imbens, 2000; Robins et al., 2000)
- Subclassification (e.g., Imai \& van Dyk, 2004)
- Regression (e.g., Hirano \& Imbens, 2004)
- But, propensity score is mostly applied to binary treatment
- All available methods assume correctly estimated propensity score
- No reliable methods to estimate generalized propensity score
- Harder to check balance across a non-binary treatment
- Many researchers dichotomize the treatment

Contributions of the Paper

- Generalize the covariate balancing propensity score (CBPS; Imai \& Ratkovic, 2014, JRSSB)
- Key idea: estimate the generalized propensity score such that the association between treatment and covariates is reduced
(1) Multi-valued treatment (3 and 4 categories)
(2) Continuous treatment
- Useful especially because checking covariate balance is harder for non-binary treatment
- Facilitates the use of generalized propensity score methods

The Setup

- $T_{i} \in \mathcal{T}$: non-binary treatment
- X_{i} : pre-treatment covariates
- $Y_{i}(t)$: potential outcomes
- Strong ignorability:

$$
T_{i} \Perp Y_{i}(t) \mid X_{i} \quad \text { and } \quad p\left(T_{i}=t \mid X_{i}\right)>0 \quad \text { for all } t \in \mathcal{T}
$$

- $p\left(T_{i} \mid X_{i}\right)$: generalized propensity score
- \widetilde{T}_{i} : dichotomized treatment
- $\widetilde{T}_{i}=1$ if $T_{i} \in \mathcal{T}_{1}$
- $\widetilde{T}_{i}=0$ if $T_{i} \in \mathcal{T}_{0}$
- $\mathcal{T}_{0} \cap \mathcal{T}_{1}=\emptyset$ and $\mathcal{T}_{0} \cup \mathcal{T}_{1}=\mathcal{T}$
- What is the problem of dichotomizing a non-binary treatment?

The Problems of Dichotomization

- Under strong ignorability,

$$
\begin{aligned}
& \mathbb{E}\left(Y_{i} \mid \widetilde{T}_{i}=1, X_{i}\right)-\mathbb{E}\left(Y_{i} \mid \widetilde{T}_{i}=0, X_{i}\right) \\
= & \int_{\mathcal{T}_{1}} \mathbb{E}\left(Y_{i}(t) \mid X_{i}\right) p\left(T_{i}=t \mid \widetilde{T}_{i}=1, X_{i}\right) d t \\
& \quad-\int_{\mathcal{T}_{0}} \mathbb{E}\left(Y_{i}(t) \mid X_{i}\right) p\left(T_{i}=t \mid \widetilde{T}_{i}=0, X_{i}\right) d t
\end{aligned}
$$

- Aggregation via $p\left(T_{i} \mid \widetilde{T}_{i}, X_{i}\right)$
(1) some substantive insights get lost
(2) external validity issue
- Checking covariate balance: $\widetilde{T}_{i} \Perp X_{i}$ does not imply $T_{i} \Perp X_{i}$

Two Motivating Examples

(1) Effect of education on political participation

- Education is assumed to play a key role in political participation
- T_{i} : 3 education levels (graduated from college, attended college but not graduated, no college)
- Original analysis \rightsquigarrow dichotomization (some college vs. no college)
- Propensity score matching
- Critics employ different matching methods
(2) Effect of advertisements on campaign contributions
- Do TV advertisements increase campaign contributions?
- T_{i} : Number of advertisements aired in each zip code
- ranges from 0 to 22,379 advertisements
- Original analysis \rightsquigarrow dichotomization (over 1000 vs. less than 1000)
- Propensity score matching followed by linear regression with an original treatment variable

Balancing Covariates for a Dichotomized Treatment

Kam and Palmer

May Not Balance Covariates for the Original Treatment

Urban and Niebler

Propensity Score for a Multi-valued Treatment

- Consider a multi-valued treatment: $\mathcal{T}=\{0,1, \ldots, J-1\}$
- Standard approach: MLE with multinomial logistic regression

$$
\pi^{j}\left(X_{i}\right)=\operatorname{Pr}\left(T_{i}=j \mid X_{i}\right)=\frac{\exp \left(X_{i}^{\top} \beta_{j}\right)}{1+\exp \left(\sum_{j^{\prime}=1}^{J} X_{i}^{\top} \beta_{j^{\prime}}\right)}
$$

where $\beta_{0}=0$ and $\sum_{j=0}^{J-1} \pi^{j}\left(X_{i}\right)=1$

- Covariate balancing conditions with inverse-probability weighting:

$$
\mathbb{E}\left(\frac{\mathbf{1}\left\{T_{i}=0\right\} X_{i}}{\pi_{\beta}^{0}\left(X_{i}\right)}\right)=\mathbb{E}\left(\frac{\mathbf{1}\left\{T_{i}=1\right\} X_{i}}{\pi_{\beta}^{1}\left(X_{i}\right)}\right)=\cdots=\mathbb{E}\left(\frac{\mathbf{1}\left\{T_{i}=J-1\right\} X_{i}}{\pi_{\beta}^{J-1}\left(X_{i}\right)}\right)
$$

which equals $\mathbb{E}\left(X_{i}\right)$

- Idea: estimate $\pi^{j}\left(X_{i}\right)$ to optimize the balancing conditions

CBPS for a Multi-valued Treatment

- Consider a 3 treatment value case as in our motivating example
- Sample balance conditions with orthogonalized contrasts:

$$
\bar{g}_{\beta}(T, X)=\frac{1}{N} \sum_{i=1}^{N}\binom{2 \frac{1\left\{T_{i}=0\right\}}{\pi_{\beta}^{0}\left(X_{i}\right)}-\frac{1\left\{T_{i}=1\right\}}{\pi_{\beta}^{1}\left(X_{i}\right)}-\frac{1\left\{T_{i}=2\right\}}{\pi_{\beta}^{2}\left(X_{i}\right)}}{\frac{1\left\{T_{i}=1\right\}}{\pi_{\beta}^{1}\left(X_{i}\right)}-\frac{1\left\{T_{i}\left(X_{\beta}\right\}\right.}{\pi_{\beta}^{2}\left(X_{i}\right)}} X_{i}
$$

- Generalized method of moments (GMM) estimation:

$$
\hat{\beta}_{\mathrm{CBPS}}=\underset{\beta}{\operatorname{argmin}} \bar{g}_{\beta}(T, X) \Sigma_{\beta}(T, X)^{-1} \bar{g}_{\beta}(T, X)
$$

where $\Sigma_{\beta}(T, X)$ is the covariance of sample moments

Score Conditions as Covariate Balancing Conditions

- Balancing the first derivative across treatment values:

$$
\begin{aligned}
& \frac{1}{N} \sum_{i=1}^{N} s_{\beta}\left(T_{i}, X_{i}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N}\binom{\left(\frac{1\left\{T_{i}=1\right\}}{\pi_{\beta}^{1}\left(X_{i}\right)}-\frac{\mathbf{1}\left\{T_{i}=0\right\}}{\pi_{\beta}^{0}\left(X_{i}\right)}\right.}{\left(\frac{1\left\{T_{i}=1\right\}}{\pi_{\beta}^{1}\left(X_{i}\right)}-\frac{1\left\{T_{i}=0\right\}}{\pi_{\beta}^{0}\left(X_{i}\right)}\right)} \frac{\partial}{\partial \beta_{1}} \pi_{\beta}^{1}\left(X_{i}\right)+\left(\begin{array}{l}
\frac{1\left\{T_{i}=2\right\}}{\pi_{\beta}^{2}\left(X_{i}\right)}-\frac{\mathbf{1}\left\{T_{i}=0\right\}}{\pi_{\beta}^{\circ}\left(X_{i}\right)}
\end{array}\right) \frac{\partial}{\partial \beta_{1}} \pi_{\beta}^{2}\left(X_{i}\right)+\left(\begin{array}{l}
\left.\frac{1\left\{T_{i}=2\right\}}{\pi_{\beta}^{2}\left(X_{i}\right)}-\frac{\mathbf{1}\left\{T_{i}=0\right\}}{\pi_{\beta}^{\circ}\left(X_{i}\right)}\right) \frac{\partial}{\partial \beta_{2}} \pi_{\beta}^{2}\left(X_{i}\right)
\end{array}\right) \\
& =\frac{1}{N} \sum_{i=1}^{N}\binom{1\left\{T_{i}=1\right\}-\pi_{\beta}^{1}\left(X_{i}\right)}{1\left\{T_{i}=2\right\}-\pi_{\beta}^{2}\left(X_{i}\right)} X_{i}
\end{aligned}
$$

- Can be added to CBPS as over-identifying restrictions

Extension to More Treatment Values

- The same idea extends to a treatment with more values
- For example, consider a four-category treatment
- Sample moment conditions based on orthogonalized contrasts:

$$
\bar{g}_{\beta}\left(T_{i}, X_{i}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(\begin{array}{c}
\frac{1\left\{T_{i}=0\right\}}{\pi_{\beta}^{0}\left(X_{i}\right)}+\frac{1\left\{T_{i}=1\right\}}{\pi_{\beta}^{1}\left(X_{i}\right)}-\frac{1\left\{T_{i}=2\right\}}{\pi_{\beta}^{2}\left(X_{i}\right)}-\frac{1\left\{T_{i}=3\right\}}{\pi_{\beta}^{3}\left(X_{i}\right)} \\
\frac{1\left\{T_{i}=0\right\}}{\pi_{\beta}^{0}\left(X_{i}\right)}-\frac{1\left\{T_{i}=1\right\}}{\pi_{\beta}^{1}\left(X_{i}\right)}-\frac{1\left\{T_{i}=2\right\}}{\pi_{\beta}^{2}\left(X_{i}\right)}+\frac{1\left\{T_{i}=3\right\}}{\pi_{\beta}^{3}\left(X_{i}\right)} \\
-\frac{1\left\{T_{i}=0\right\}}{\pi_{\beta}^{0}\left(X_{i}\right)}+\frac{\mathbf{1}\left\{T_{i=1\}}^{1}\right.}{\pi_{\beta}^{1}\left(X_{i}\right)}-\frac{\mathbf{1}\left\{T_{i=2}\right.}{\pi_{\beta}^{2}\left(X_{i}\right)}+\frac{\mathbf{1}\left\{T_{i}\left(X_{1}\right\}\right.}{\pi_{\beta}^{3}\left(X_{i}\right)}
\end{array}\right) X_{i}
$$

- A similar orthogonalization strategy can be applied to marginal structural models (Imai \& Ratkovic, 2014)

Propensity Score for a Continuous Treatment

- The stabilized weights:

$$
\frac{f\left(T_{i}\right)}{f\left(T_{i} \mid X_{i}\right)}
$$

- Covariate balancing condition:

$$
\begin{aligned}
\mathbb{E}\left(\frac{f\left(T_{i}^{*}\right)}{f\left(T_{i}^{*} \mid X_{i}^{*}\right)} T_{i}^{*} X_{i}^{*}\right) & =\int\left\{\int \frac{f\left(T_{i}^{*}\right)}{f\left(T_{i}^{*} \mid X_{i}^{*}\right)} T_{i}^{*} d F\left(T_{i}^{*} \mid X_{i}^{*}\right)\right\} X_{i}^{*} d F\left(X_{i}^{*}\right) \\
& =\mathbb{E}\left(T_{i}^{*}\right) \mathbb{E}\left(X_{i}^{*}\right)=0
\end{aligned}
$$

where T_{i}^{*} and X_{i}^{*} are centered versions of T_{i} and X_{i}

- Again, estimate the generalized propensity score such that covariate balance is optimized

CBPS for a Continuous Treatment

- Standard approach (e.g., Robins et al. 2000):

$$
\begin{array}{rl}
T_{i}^{*} \mid X_{i}^{*} & \stackrel{\text { indep. }}{\sim} \\
T_{i}^{*} & \mathcal{N}\left(X_{i}^{\top} \beta, \sigma^{2}\right) \\
\sim & \mathcal{N}\left(0, \sigma^{2}\right)
\end{array}
$$

where further transformation of T_{i} can make these distributional assumptions more credible

- Sample covariate balancing conditions:

$$
\bar{g}_{\theta}(T, X)=\binom{\bar{s}_{\theta}(T, X)}{\bar{w}_{\theta}(T, X)}=\frac{1}{N} \sum_{i=1}^{N}\left(\begin{array}{c}
\frac{1}{\frac{1}{\sigma^{2}}}\left(T_{i}^{*}-X_{i}^{* \top} \beta\right) X_{i}^{*} \\
\left.-\frac{1}{2 \sigma^{2}}\left\{1-\frac{1}{\sigma^{2}} T_{i}^{*}-X_{i}^{* \top} \beta\right)^{2}\right\} \\
\exp \left[\frac{1}{2 \sigma^{2}}\left\{-2 X_{i}^{* \top} \beta+\left(X_{i}^{* \top} \beta\right)^{2}\right\}\right] T_{i}^{*} X_{i}^{*}
\end{array}\right)
$$

- GMM estimation: covariance matrix can be analytically calculated

Back to the Education Example: CBPS vs. ML

- CBPS achieves better covariate balance

CBPS Avoids Extremely Large Weights

CBPS Balances Well for a Dichotomized Treatment

Empirical Results: Graduation Matters, Efficiency Gain

Onto the Advertisement Example

Empirical Finding: Little Effect of Advertisement

Concluding Remarks

- Numerous advances in generalizing propensity score methods to non-binary treatments
- Yet, many applied researchers don't use these methods and dichotomize non-binary treatments
- We offer a simple method to improve the estimation of propensity score for general treatment regimes
- Open-source R package: CBPS: Covariate Balancing Propensity Score available at CRAN
- Future extensions: nonparametric estimation, spatial treatments

