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Causal Mediation Analysis

Graphical representation
Mediator, M

Treatment, T Outcome, Y

Quantities of interest: Direct and indirect effects
Fast growing methodological literature
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Notation for Causal Mediation Analysis

Binary treatment: Ti ∈ {0,1}
Mediator: Mi ∈M
Outcome: Yi ∈ Y
Observed covariates: Xi ∈ X

Potential mediators: Mi(t) where Mi = Mi(Ti)

Potential outcomes: Yi(t ,m) where Yi = Yi(Ti ,Mi(Ti))
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Defining and Interpreting Causal Mediation Effects

Total causal effect:

τi ≡ Yi(1,Mi(1))− Yi(0,Mi(0))

Causal mediation effects:

δi(t) ≡ Yi(t ,Mi(1))− Yi(t ,Mi(0))

Causal effect of the change in Mi on Yi that would be induced by
treatment
Change the mediator from Mi(0) to Mi(1) while holding the
treatment constant at t

Kosuke Imai (Princeton University) Causal Mediation Analysis JSM 2009 4 / 15



Direct effects:

ζi(t) ≡ Yi(1,Mi(t))− Yi(0,Mi(t))

Causal effect of Ti on Yi , holding mediator constant at its potential
value that would realize when Ti = t
Change the treatment from 0 to 1 while holding the mediator
constant at Mi(t)

Total effect = mediation (indirect) effect + direct effect:

τi = δi(t) + ζi(1− t) =
1
2
{δi(0) + δi(1) + ζi(0) + ζi(1)}
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Nonparametric Identification

Quantity of Interest: Average Causal Mediation Effects

δ̄(t) ≡ E(δi(t)) = E{Yi(t ,Mi(1))− Yi(t ,Mi(0))}
Problem: Yi(t ,Mi(t)) is observed but Yi(t ,Mi(1− t)) can never be
observed

Proposed identification assumption: Sequential Ignorability

{Yi(t ′,m),Mi(t)} ⊥⊥ Ti | Xi = x ,

Yi(t ′,m) ⊥⊥ Mi | Ti = t ,Xi = x

Theorem 1 (Nonparametric Identification)
Under sequential ignorability,

δ̄(t) =
R R

E(Yi | Mi ,Ti = t ,Xi ) {dP(Mi | Ti = 1,Xi )− dP(Mi | Ti = 0,Xi )} dP(Xi ),

ζ̄(t) =
R R
{E(Yi | Mi ,Ti = 1,Xi )− E(Yi | Mi ,Ti = 0,Xi )} dP(Mi | Ti = t ,Xi ) dP(Xi ).
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Inference Under Sequential Ignorability

Model outcome and mediator
Outcome model: p(Yi | Ti ,Mi ,Xi)

Mediator model: p(Mi | Ti ,Xi)

A simplest setup: Linear Structural Equation Model (LSEM)

Mi = α2 + β2Ti + εi2,

Yi = α3 + β3Ti + γMi + εi3.

Theorem 2 (Identification Under LSEM)
Under the LSEM and sequential ignorability, the average causal
mediation effects are identified as δ̄(0) = δ̄(1) = β2γ.

Can include the interaction between Ti and Mi

Can use parametric or nonparametric regressions; probit, logit,
ordered mediator, GAM, quantile regression, etc.
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Algorithm for Estimating Causal Mediation Effects

Parametric models: Quasi-Bayesian approximation
Step 1: Estimate models for outcome and mediator
Step 2: Take J draws from the asymptotic sampling distribution of
model parameters
Step 3: Repeat the following steps for each j = 1,2, ..., J

1: Sample K copies of Mi (t) from the mediator model
2: Given this draw, sample one copy of Yi (t ′,Mi (t)) from the outcome

model
3: Compute QoI based on these K sets of draws

Step 4: Compute the point estimate and uncertainty estimates
from the resulting J draws of QoI

Nonparametric/semiparametric models: Nonparametric bootstrap

General implementation for statistical software
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Need for Sensitivity Analysis

The sequential ignorability assumption is often too strong

Need to assess the robustness of findings via sensitivity analysis
Question: How large a departure from the key assumption must
occur for the conclusions to no longer hold?

Parametric sensitivity analysis by assuming

{Yi(t ′,m),Mi(t)} ⊥⊥ Ti | Xi = x

but not
Yi(t ′,m) ⊥⊥ Mi | Ti = t ,Xi = x

Possible existence of unobserved pre-treatment confounder
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Parametric Sensitivity Analysis

Sensitivity parameter: ρ ≡ Corr(εi2, εi3)

Sequential ignorability implies ρ = 0
Set ρ to different values and see how mediation effects change

Theorem 3

δ̄(0) = δ̄(1) =
β2σ1

σ2

{
ρ̃− ρ

√
(1− ρ̃2)/(1− ρ2)

}
,

where σ2
j ≡ var(εij) for j = 1,2 and ρ̃ ≡ Corr(εi1, εi2).

When do my results go away completely?
δ̄(t) = 0 if and only if ρ = ρ̃

Easy to estimate from the regression of Yi on Ti :

Yi = α1 + β1Ti + εi1
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Sensitivity Analysis with Respect to ρ
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Interpreting Sensitivity Analysis with R squares

Interpreting ρ: how small is too small?

An unobserved (pre-treatment) confounder formulation:

εi2 = λ2Ui + ε′i2 and εi3 = λ3Ui + ε′i3

How much does Ui have to explain for our results to go away?

Sensitivity parameters: R squares
1 Proportion of previously unexplained variance explained by Ui

R2∗
M ≡ 1−

var(ε′i2)

var(εi2)
and R2∗

Y ≡ 1−
var(ε′i3)

var(εi3)

2 Proportion of original variance explained by Ui

R̃2
M ≡

var(εi2)− var(ε′i2)

var(Mi )
and R̃2

Y ≡
var(εi3)− var(ε′i3)

var(Yi )
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Then reparameterize ρ using (R2∗
M ,R2∗

Y ) (or (R̃2
M , R̃

2
Y )):

ρ = sgn(λ2λ3)R∗MR∗Y =
sgn(λ2λ3)R̃MR̃Y√
(1− R2

M)(1− R2
Y )
,

where R2
M and R2

Y are from the original mediator and outcome
models

sgn(λ2λ3) indicates the direction of the effects of Ui on Yi and Mi

Set (R2∗
M ,R2∗

Y ) (or (R̃2
M , R̃

2
Y )) to different values and see how

mediation effects change
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Sensitivity Analysis with Respect to (R̃2
M , R̃

2
Y )
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Papers and Software

“Identification, Inference, and Sensitivity Analysis for Causal
Mediation Effects.”
“A General Approach to Causal Mediation Analysis.”
“Causal Mediation Analysis in R.”
All available at
http://imai.princeton.edu/projects/mechanisms.html

mediation: R package for causal mediation analysis
Available at
http://cran.r-project.org/web/packages/mediation/
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