A General Approach to Causal Mediation Analysis

Kosuke Imai

Princeton University

August 6, 2009 Joint work with Luke Keele, Dustin Tingley, and Teppei Yamamoto

- Quantities of interest: Direct and indirect effects
- Fast growing methodological literature

Notation for Causal Mediation Analysis

- Binary treatment: $T_i \in \{0, 1\}$
- Mediator: $M_i \in \mathcal{M}$
- Outcome: $Y_i \in \mathcal{Y}$
- Observed covariates: $X_i \in \mathcal{X}$
- Potential mediators: $M_i(t)$ where $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$ where $Y_i = Y_i(T_i, M_i(T_i))$

Kosuke Imai (Princeton University)

Causal Mediation Analysis

JSM 2009 3 / 15

Defining and Interpreting Causal Mediation Effects

• Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

• Causal mediation effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Causal effect of the change in *M_i* on *Y_i* that would be induced by treatment
- Change the mediator from M_i(0) to M_i(1) while holding the treatment constant at t

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Causal effect of T_i on Y_i , holding mediator constant at its potential value that would realize when $T_i = t$
- Change the treatment from 0 to 1 while holding the mediator constant at M_i(t)
- Total effect = mediation (indirect) effect + direct effect:

$$\tau_i = \delta_i(t) + \zeta_i(1-t) = \frac{1}{2} \{ \delta_i(0) + \delta_i(1) + \zeta_i(0) + \zeta_i(1) \}$$

Kosuke Imai (Princeton University)

Causal Mediation Analysis

JSM 2009 5 / 15

Nonparametric Identification

• Quantity of Interest: Average Causal Mediation Effects

 $\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$

- Problem: Y_i(t, M_i(t)) is observed but Y_i(t, M_i(1 t)) can never be observed
- Proposed identification assumption: Sequential Ignorability

$$\{Y_i(t', m), M_i(t)\} \perp T_i \mid X_i = x, Y_i(t', m) \perp M_i \mid T_i = t, X_i = x$$

Theorem 1 (Nonparametric Identification)

Under sequential ignorability,

 $\bar{\delta}(t) = \int \int \mathbb{E}(Y_i \mid M_i, T_i = t, X_i) \{ dP(M_i \mid T_i = 1, X_i) - dP(M_i \mid T_i = 0, X_i) \} dP(X_i),$

$$\bar{\zeta}(t) = \int \int \{\mathbb{E}(Y_i \mid M_i, T_i = 1, X_i) - \mathbb{E}(Y_i \mid M_i, T_i = 0, X_i)\} dP(M_i \mid T_i = t, X_i) dP(X_i).$$

Inference Under Sequential Ignorability

- Model outcome and mediator
- Outcome model: $p(Y_i | T_i, M_i, X_i)$
- Mediator model: $p(M_i | T_i, X_i)$
- A simplest setup: Linear Structural Equation Model (LSEM)

$$\begin{aligned} \mathbf{M}_i &= \alpha_2 + \beta_2 \mathbf{T}_i + \epsilon_{i2}, \\ \mathbf{Y}_i &= \alpha_3 + \beta_3 \mathbf{T}_i + \gamma \mathbf{M}_i + \epsilon_{i3}. \end{aligned}$$

Theorem 2 (Identification Under LSEM)

Under the LSEM and sequential ignorability, the average causal mediation effects are identified as $\overline{\delta}(0) = \overline{\delta}(1) = \beta_2 \gamma$.

- Can include the interaction between T_i and M_i
- Can use parametric or nonparametric regressions; probit, logit, ordered mediator, GAM, quantile regression, etc.

```
Kosuke Imai (Princeton University)
```

Causal Mediation Analysis

JSM 2009 7 / 15

Algorithm for Estimating Causal Mediation Effects

Parametric models: Quasi-Bayesian approximation

- Step 1: Estimate models for outcome and mediator
- Step 2: Take *J* draws from the asymptotic sampling distribution of model parameters
- Step 3: Repeat the following steps for each j = 1, 2, ..., J
 - 1: Sample *K* copies of $M_i(t)$ from the mediator model
 - 2: Given this draw, sample one copy of $Y_i(t', M_i(t))$ from the outcome model
 - 3: Compute QoI based on these K sets of draws
- Step 4: Compute the point estimate and uncertainty estimates from the resulting *J* draws of QoI

Nonparametric/semiparametric models: Nonparametric bootstrap

General implementation for statistical software

Need for Sensitivity Analysis

- The sequential ignorability assumption is often too strong
- Need to assess the robustness of findings via sensitivity analysis
- Question: How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Parametric sensitivity analysis by assuming

$$\{Y_i(t',m),M_i(t)\} \perp T_i \mid X_i = x$$

but not

$$Y_i(t', m) \perp M_i \mid T_i = t, X_i = x$$

• Possible existence of unobserved *pre-treatment* confounder

Parametric Sensitivity Analysis

- Sensitivity parameter: $\rho \equiv Corr(\epsilon_{i2}, \epsilon_{i3})$
- Sequential ignorability implies $\rho = 0$
- Set ρ to different values and see how mediation effects change

Theorem 3

$$\overline{\delta}(\mathbf{0}) = \overline{\delta}(\mathbf{1}) = \frac{\beta_2 \sigma_1}{\sigma_2} \left\{ \widetilde{\rho} - \frac{\rho \sqrt{(1 - \widetilde{\rho}^2)/(1 - \rho^2)}}{\sqrt{(1 - \rho^2)}} \right\}$$

where $\sigma_j^2 \equiv \operatorname{var}(\epsilon_{ij})$ for j = 1, 2 and $\tilde{\rho} \equiv \operatorname{Corr}(\epsilon_{i1}, \epsilon_{i2})$.

- When do my results go away completely?
- $\overline{\delta}(t) = 0$ if and only if $\rho = \tilde{\rho}$
- Easy to estimate from the regression of *Y_i* on *T_i*:

$$Y_i = \alpha_1 + \beta_1 T_i + \epsilon_{i1}$$

JSM 2009

9/15

Sensitivity Analysis with Respect to ρ

ACME(p)

Interpreting Sensitivity Analysis with R squares

- Interpreting ρ: how small is too small?
- An unobserved (pre-treatment) confounder formulation:

$$\epsilon_{i2} = \lambda_2 U_i + \epsilon'_{i2}$$
 and $\epsilon_{i3} = \lambda_3 U_i + \epsilon'_{i3}$

- How much does U_i have to explain for our results to go away?
- Sensitivity parameters: R squares
 Proportion of previously unexplained variance explained by U_i

$$R_M^{2*} \equiv 1 - \frac{\operatorname{var}(\epsilon'_{i2})}{\operatorname{var}(\epsilon_{i2})}$$
 and $R_Y^{2*} \equiv 1 - \frac{\operatorname{var}(\epsilon'_{i3})}{\operatorname{var}(\epsilon_{i3})}$

2 Proportion of original variance explained by U_i

$$\widetilde{R}_M^2 \equiv \frac{\operatorname{var}(\epsilon_{i2}) - \operatorname{var}(\epsilon'_{i2})}{\operatorname{var}(M_i)}$$
 and $\widetilde{R}_Y^2 \equiv \frac{\operatorname{var}(\epsilon_{i3}) - \operatorname{var}(\epsilon'_{i3})}{\operatorname{var}(Y_i)}$

• Then reparameterize ρ using (R_M^{2*}, R_Y^{2*}) (or $(\tilde{R}_M^2, \tilde{R}_Y^2)$):

$$\rho = \operatorname{sgn}(\lambda_2 \lambda_3) R_M^* R_Y^* = \frac{\operatorname{sgn}(\lambda_2 \lambda_3) \widetilde{R}_M \widetilde{R}_Y}{\sqrt{(1 - R_M^2)(1 - R_Y^2)}},$$

where R_M^2 and R_Y^2 are from the original mediator and outcome models

- $sgn(\lambda_2\lambda_3)$ indicates the direction of the effects of U_i on Y_i and M_i
- Set (R_M^{2*}, R_Y^{2*}) (or $(\tilde{R}_M^2, \tilde{R}_Y^2)$) to different values and see how mediation effects change

Papers and Software

- "Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects."
- "A General Approach to Causal Mediation Analysis."
- "Causal Mediation Analysis in R."
- All available at http://imai.princeton.edu/projects/mechanisms.html
- mediation: R package for causal mediation analysis
- Available at

http://cran.r-project.org/web/packages/mediation/

Kosuke Imai (Princeton University)

Causal Mediation Analysis

JSM 2009 15 / 15