Principal Fairness for Human and Algorithmic Decision-Making

Kosuke Imai

Harvard University

DeMo Meeting Research Section, Royal Statistical Society February 8, 2022

Joint work with Zhichao Jiang (University of Massachusetts, Amherst)

Fair Decision-Making

- What is a fair decision?
- How should we assess the fairness of decision?
- How should we improve the fairness of decision-making from data?
- Examples: courts, medicine, admissions, lending, insurance, hiring, ...
- Fair decision-making in public policies
- Literature on algorithmic fairness
- Imai, K. and Jiang, Z. (2020). "Principal fairness for human and algorithmic decision-making." arXiv preprint, https://arxiv.org/pdf/2005.10400.pdf

Statistical Fairness Criteria

- Developed for assessing the fairness of prediction algorithms
- But also used for assessing the fairness of algorithmic/human decision
- Setup:
 - outcome: Y
 - prediction or decision: D
 - protected attribute (e.g., race, gender): A
- 3 Statistical fairness criteria:
 - Sequal decision: D⊥⊥A Pr(D = 1 | A = a) = Pr(D = 1 | A = a')
 Equal accuracy: D⊥⊥A | Y Pr(D = 1 | Y = 1, A = a) = Pr(D = 1 | Y = 1, A = a') Pr(D = 0 | Y = 0, A = a) = Pr(D = 0 | Y = 0, A = a')
 Equal calibration: Y⊥⊥A | D Pr(Y = 1 | D = 1, A = a) = Pr(Y = 1 | D = 1, A = a') Pr(Y = 0 | D = 0, A = a) = Pr(Y = 0 | D = 0, A = a')

The COMPAS Debate (Correctional Offender Management Profiling for Alternative Sanctions)

4/12

Impossibility Results

- Propublica: false positive rate is higher for blacks
 Pr(risky | not rearrested, black) >>> Pr(risky | not rearrested, white)
- Northpointe: calibration is equal Pr(rearrested | risky, black) ≈ Pr(rearrested | risky, white)
- It is impossible to satisfy both criteria unless:
 - recidivism rate and score distribution are identical across racial groups
 - or, some racial groups never experience recidivism
- In general, we cannot satisfy all three statistical fairness criteria
 - If equal decision (D⊥⊥A) and equal accuracy (D⊥⊥A | Y) hold, then either the base rate is equal (Y⊥⊥A) or the decision is useless (D⊥⊥Y)
 - If equal decision (D⊥⊥A) and equal calibration (Y⊥⊥A | D) hold, then the base rate has to be equal (Y⊥⊥A)

Principal Fairness: Taking Causality into Account

- The statistical fairness criteria ignore the fact that the decision may affect the outcome
 - Observed data are contaminated (related to selective labels problem)
 - 2 fairness should address how individuals are affected by the decision
- Causality framework:
 - potential outcomes: Y(1) and Y(0)
 - causal effect: Y(1) Y(0)
 - fundamental problem of causal inference
 - different from the observed outcome: Y = Y(D)
 - potential outcomes are pre-treatment characteristics
 - principal strata: $R = (Y(1), Y(0)) = (y_1, y_0)$
- Principal fairness: individuals who are similarly affected by the decision should be treated similarly

$$D \perp\!\!\!\perp A \mid R$$

An Illustrative Example

Group A		Y(0) = 1	Y(0) = 0
Y(1) = 1		Dangerous	Backlash
	Detained $(D = 1)$	120	30
	Released $(D = 0)$	30	30
		Preventable	Safe
Y(1) = 0	Detained $(D = 1)$	70	30
	Released $(D = 0)$	70	120
Group B		Y(0) = 1	Y(0) = 0
Y(1) = 1		Dangerous	Backlash
	Detained $(D = 1)$	80	20
	Released $(D = 0)$	20	20
		Preventable	Safe
Y(1) = 0	Detained $(D = 1)$	80	40
	Released $(D = 0)$	80	160

• Detention rate within each principal strata is identical for Groups A&B

- "Dangerous" group ($y_0 = 1, y_1 = 1$): 80%
- "Safe" group $(y_0 = 0, y_1 = 0)$: 20%
- "Preventable" group ($y_0 = 1, y_1 = 0$): 50%
- "Backlash" group ($y_0 = 0, y_1 = 1$): 50%

The Example Does Not Satisfy Statistical Fairness

	Group A		Group B	
	Detained	Released	Detained	Released
Y = 1	150	100	100	100
Y = 0	100	150	120	180

- Equal decision
 - Group A: 50%
 - Group B: 44%
- Equal accuracy
 - Group A: 60% (Y = 1), 60% (Y = 0)
 - Group B: 50% (Y = 1), 40% (Y = 0)
- Equal calibration
 - Group A: 60% (D = 1), 60% (D = 0)
 - Group B: 45% (D = 1), 64% (D = 0)

Relations between Principal Fairness and Statistical Fairness

Theorem 1

If $A \perp\!\!\!\perp R$ holds, principal fairness implies all three statistical fairness criteria

Assumption 1 (Monotonicity) $Y(1) \le Y(0)$

Theorem 2

If $A \perp \!\!\!\perp R$ and monotonicity hold, principal fairness is equivalent to the three statistical fairness criteria

- $A \perp \!\!\perp R$ is the equal base rate condition with potential outcomes
- The results hold conditional on covariates
- Monotonicity assumption eliminates the "Backlash" group in our example

Other Causality-based Fairness Criteria

Counterfactual equalized odds criterion

- condition on a "natural baseline": $Pr(D \mid Y(0), A = a) = Pr(D \mid Y(0), A = a')$
- does not account for the impact of decision
- if $Y(1) \perp \mid X(0)$, principal fairness implies this criterion
- a special case: Y(1) is constant across groups
- principal fairness as a generalization

2 Counterfactual fairness

- protected attribute as a causal variable: D(a), D = D(A)
- fairness criteria: Pr(D(a) = 1) = Pr(D(a') = 1)
- no causation without manipulation
- decision rule that does not depend on the protected attribute satisfies counterfactual fairness but can fail to meet principal fairness

Empirical Evaluation and Policy Learning

- Difficulty: principal strata are unobserved
- The approach taken in our JRSSA discussion paper

Assumption 2 (Unconfoundedness)

 $Y(d) \perp D \mid X$ for any d where X is the decision variables

- Plausible if the decision variables are known (e.g., algorithmic decision)
- Under monotonicity and unconfoundedness, we can
 - identify principal score: $e_r(X, A) = Pr(R = r | X, A)$
 - evaluate principal fairness by computing Pr(D = 1 | R, A)
- Policy learning:
 - decision rule: $D = \delta(X)$

•
$$\Pr(\delta(\mathsf{X}) = 1 \mid R = r, A) = \mathbb{E}\left[\underbrace{\frac{e_r(\mathsf{X}, A)}{\mathbb{E}\{e_r(\mathsf{X}, A) \mid A\}}}_{\text{weight}} \delta(\mathsf{X}) \mid A\right]$$

• optimal policy subject to the fairness constraint

- Fairness of human and algorithmic decision-making needs to be placed in the causal inference framework
- We must consider how the decision affects individuals
- Important extensions:
 - algorithm-assisted human decision making (our JRSSA paper)
 - evaluation and policy learning in real world applications
 - selection biases, and dynamic systems