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Fair Decision-Making

What is a fair decision?
How should we assess the fairness of decision?
How should we improve the fairness of decision-making from data?
Examples: courts, medicine, admissions, lending, insurance, hiring, ...
Fair decision-making in public policies
Literature on algorithmic fairness

Imai, K. and Jiang, Z. (2020). “Principal fairness for human and
algorithmic decision-making.” arXiv preprint,
https://arxiv.org/pdf/2005.10400.pdf
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Statistical Fairness Criteria

Developed for assessing the fairness of prediction algorithms
But also used for assessing the fairness of algorithmic/human decision

Setup:
outcome: Y
prediction or decision: D
protected attribute (e.g., race, gender): A

3 Statistical fairness criteria:
1 Equal decision: D⊥⊥A

Pr(D = 1 | A = a) = Pr(D = 1 | A = a′)
2 Equal accuracy: D⊥⊥A | Y

Pr(D = 1 | Y = 1,A = a) = Pr(D = 1 | Y = 1,A = a′)
Pr(D = 0 | Y = 0,A = a) = Pr(D = 0 | Y = 0,A = a′)

3 Equal calibration: Y⊥⊥A | D
Pr(Y = 1 | D = 1,A = a) = Pr(Y = 1 | D = 1,A = a′)
Pr(Y = 0 | D = 0,A = a) = Pr(Y = 0 | D = 0,A = a′)
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The COMPAS Debate (Correctional Offender Management Profiling for

Alternative Sanctions)
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Impossibility Results

Propublica: false positive rate is higher for blacks
Pr(risky | not rearrested, black)� Pr(risky | not rearrested,white)
Northpointe: calibration is equal
Pr(rearrested | risky, black) ≈ Pr(rearrested | risky,white)

It is impossible to satisfy both criteria unless:
recidivism rate and score distribution are identical across racial groups
or, some racial groups never experience recidivism

In general, we cannot satisfy all three statistical fairness criteria
If equal decision (D⊥⊥A) and equal accuracy (D⊥⊥A | Y ) hold, then
either the base rate is equal (Y⊥⊥A) or the decision is useless (D⊥⊥Y )
If equal decision (D⊥⊥A) and equal calibration (Y⊥⊥A | D) hold, then
the base rate has to be equal (Y⊥⊥A)
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Principal Fairness: Taking Causality into Account

The statistical fairness criteria ignore the fact that the decision may
affect the outcome

1 observed data are contaminated (related to selective labels problem)
2 fairness should address how individuals are affected by the decision

Causality framework:
potential outcomes: Y (1) and Y (0)
causal effect: Y (1)− Y (0)
fundamental problem of causal inference
different from the observed outcome: Y = Y (D)
potential outcomes are pre-treatment characteristics
principal strata: R = (Y (1),Y (0)) = (y1, y0)

Principal fairness: individuals who are similarly affected by the decision
should be treated similarly

D⊥⊥A | R
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An Illustrative Example
Group A Y (0) = 1 Y (0) = 0

Dangerous Backlash

Y (1) = 1 Detained (D = 1) 120 30
Released (D = 0) 30 30

Preventable Safe

Y (1) = 0 Detained (D = 1) 70 30
Released (D = 0) 70 120

Group B Y (0) = 1 Y (0) = 0
Dangerous Backlash

Y (1) = 1 Detained (D = 1) 80 20
Released (D = 0) 20 20

Preventable Safe

Y (1) = 0 Detained (D = 1) 80 40
Released (D = 0) 80 160

Detention rate within each principal strata is identical for Groups A&B
“Dangerous” group (y0 = 1, y1 = 1): 80%
“Safe” group (y0 = 0, y1 = 0): 20%
“Preventable” group (y0 = 1, y1 = 0): 50%
“Backlash” group (y0 = 0, y1 = 1): 50% 7 / 12



The Example Does Not Satisfy Statistical Fairness

Group A Group B
Detained Released Detained Released

Y = 1 150 100 100 100
Y = 0 100 150 120 180

Equal decision
Group A: 50%
Group B: 44%

Equal accuracy
Group A: 60% (Y = 1), 60% (Y = 0)
Group B: 50% (Y = 1), 40% (Y = 0)

Equal calibration
Group A: 60% (D = 1), 60% (D = 0)
Group B: 45% (D = 1), 64% (D = 0)
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Relations between Principal Fairness and Statistical Fairness

Theorem 1
If A⊥⊥R holds, principal fairness implies all three statistical fairness criteria

Assumption 1 (Monotonicity)
Y (1) ≤ Y (0)

Theorem 2
If A⊥⊥R and monotonicity hold, principal fairness is equivalent to the three
statistical fairness criteria

A⊥⊥R is the equal base rate condition with potential outcomes
The results hold conditional on covariates
Monotonicity assumption eliminates the “Backlash” group in our
example
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Other Causality-based Fairness Criteria

1 Counterfactual equalized odds criterion
condition on a “natural baseline”:
Pr(D | Y (0),A = a) = Pr(D | Y (0),A = a′)
does not account for the impact of decision
if Y (1)⊥⊥A | Y (0), principal fairness implies this criterion
a special case: Y (1) is constant across groups
principal fairness as a generalization

2 Counterfactual fairness
protected attribute as a causal variable: D(a), D = D(A)
fairness criteria: Pr(D(a) = 1) = Pr(D(a′) = 1)
no causation without manipulation
decision rule that does not depend on the protected attribute satisfies
counterfactual fairness but can fail to meet principal fairness
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Empirical Evaluation and Policy Learning

Difficulty: principal strata are unobserved
The approach taken in our JRSSA discussion paper

Assumption 2 (Unconfoundedness)
Y (d) ⊥⊥ D | X for any d where X is the decision variables

Plausible if the decision variables are known (e.g., algorithmic decision)
Under monotonicity and unconfoundedness, we can

identify principal score: er (X,A) = Pr(R = r | X,A)
evaluate principal fairness by computing Pr(D = 1 | R,A)

Policy learning:
decision rule: D = δ(X)

Pr(δ(X) = 1 | R = r ,A) = E
[ er (X,A)
E{er (X,A) | A}︸ ︷︷ ︸

weight

δ(X)
∣∣ A]

optimal policy subject to the fairness constraint
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Concluding Remarks

Fairness of human and algorithmic decision-making needs to be placed
in the causal inference framework

We must consider how the decision affects individuals

Important extensions:
algorithm-assisted human decision making (our JRSSA paper)
evaluation and policy learning in real world applications
selection biases, and dynamic systems
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