Covariate Balancing Propensity Score

Kosuke Imai

Princeton University
Department of Politics
Center for Statistics and Machine Learning

Talk at The Institute of Statistical Mathematics

January 6, 2016

Joint work with Marc Ratkovic

Motivation and Overview

- Central role of propensity score in causal inference
- Adjusting for observed confounding in observational studies
- Generalizing experimental and instrumental variables estimates
- Propensity score tautology
- sensitivity to model misspecification
- adhoc specification searches
- Covariate Balancing Propensity Score (CBPS)
- Estimate the propensity score such that covariates are balanced
- Inverse probability weights for marginal structural models
- Three cases:
(1) Binary treatment
(2) Time-varying binary treatments in longitudinal settings
(3) Multi-valued and continuous treatments

Propensity Score

- Notation:
- $T_{i} \in\{0,1\}$: binary treatment
- X_{i} : pre-treatment covariates
- Dual characteristics of propensity score:
(1) Predicts treatment assignment:

$$
\pi\left(X_{i}\right)=\operatorname{Pr}\left(T_{i}=1 \mid X_{i}\right)
$$

(2) Balances covariates (Rosenbaum and Rubin, 1983):

$$
T_{i} \Perp X_{i} \mid \pi\left(X_{i}\right)
$$

- But, propensity score must be estimated (more on this later)

Use of Propensity Score for Causal Inference

- Matching
- Subclassification
- Weighting (Horvitz-Thompson):

$$
\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{T_{i} Y_{i}}{\hat{\pi}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) Y_{i}}{1-\hat{\pi}\left(X_{i}\right)}\right\}
$$

where weights are often normalized

- Doubly-robust estimators (Robins et al.):

$$
\frac{1}{n} \sum_{i=1}^{n}\left[\left\{\hat{\mu}\left(1, X_{i}\right)+\frac{T_{i}\left(Y_{i}-\hat{\mu}\left(1, X_{i}\right)\right)}{\hat{\pi}\left(X_{i}\right)}\right\}-\left\{\hat{\mu}\left(0, X_{i}\right)+\frac{\left(1-T_{i}\right)\left(Y_{i}-\hat{\mu}\left(0, X_{i}\right)\right)}{1-\hat{\pi}\left(X_{i}\right)}\right\}\right]
$$

- They have become standard tools for applied researchers

Weighting to Balance Covariates

- Balancing condition: $\mathbb{E}\left\{\frac{T_{i} X_{i}}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) X_{i}}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0$

Propensity Score Tautology

- Propensity score is unknown and must be estimated
- Dimension reduction is purely theoretical: must model T_{i} given X_{i}
- Diagnostics: covariate balance checking
- In theory: ellipsoidal covariate distributions
\Longrightarrow equal percent bias reduction
- In practice: skewed covariates and adhoc specification searches
- Propensity score methods are sensitive to model misspecification
- Tautology: propensity score methods only work when they work

Kang and Schafer (2007, Statistical Science)

- Simulation study: the deteriorating performance of propensity score weighting methods when the model is misspecified
- 4 covariates X_{i}^{*} : all are i.i.d. standard normal
- Outcome model: linear model
- Propensity score model: logistic model with linear predictors
- Misspecification induced by measurement error:
- $X_{i 1}=\exp \left(X_{i 1}^{*} / 2\right)$
- $X_{i 2}=X_{i 2}^{*} /\left(1+\exp \left(X_{1 i}^{*}\right)+10\right)$
- $X_{i 3}=\left(X_{i 1}^{*} X_{i 3}^{*} / 25+0.6\right)^{3}$
- $X_{i 4}=\left(X_{i 1}^{*}+X_{i 4}^{*}+20\right)^{2}$

Weighting Estimators Evaluated

(1) Horvitz-Thompson (HT):

$$
\frac{1}{n} \sum_{i=1}^{n}\left\{\frac{T_{i} Y_{i}}{\hat{\pi}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) Y_{i}}{1-\hat{\pi}\left(X_{i}\right)}\right\}
$$

(2) Inverse-probability weighting with normalized weights (IPW): HT with normalized weights (Hirano, Imbens, and Ridder)
(3) Weighted least squares regression (WLS): linear regression with HT weights
(9) Doubly-robust least squares regression (DR): consistently estimates the ATE if either the outcome or propensity score model is correct (Robins, Rotnitzky, and Zhao)

Weighting Estimators Do Fine If the Model is Correct

Bias

Sample size	Estimator	GLM	True	GLM	True
(1) Both models correct					
	HT	0.33	1.19	12.61	23.93
$n=200$	IPW	-0.13	-0.13	3.98	5.03
	WLS	-0.04	-0.04	2.58	2.58
	DR	-0.04	-0.04	2.58	2.58
1000	HT	0.01	-0.18	4.92	10.47
	IPW	0.01	-0.05	1.75	2.22
	WLS	0.01	0.01	1.14	1.14
	DR	0.01	0.01	1.14	1.14

(2) Propensity score model correct

	HT	-0.05	-0.14	14.39	24.28
$n=200$	IPW	-0.13	-0.18	4.08	4.97
	WLS	0.04	0.04	2.51	2.51
	DR	0.04	0.04	2.51	2.51
$n=1000$	HT	-0.02	0.29	4.85	10.62
	IPW	0.02	-0.03	1.75	2.27
	WLS	0.04	0.04	1.14	1.14
	DR	0.04	0.04	1.14	1.14

Weighting Estimators are Sensitive to Misspecification

Bias

RMSE

Sample size	Estimator	GLM	True	GLM	True
(3) Outcome model correct					
$n=200$	HT	24.25	-0.18	194.58	23.24
	IPW	1.70	-0.26	9.75	4.93
	WLS	-2.29	0.41	4.03	3.31
	DR	-0.08	-0.10	2.67	2.58
$n=1000$	HT	41.14	-0.23	238.14	10.42
	IPW	4.93	-0.02	11.44	2.21
	WLS	-2.94	0.20	3.29	1.47
	DR	0.02	0.01	1.89	1.13
(4) Both models incorrect					
$n=200$	HT	30.32	-0.38	266.30	23.86
	IPW	1.93	-0.09	10.50	5.08
	WLS	-2.13	0.55	3.87	3.29
	DR	-7.46	0.37	50.30	3.74
$n=1000$	HT	101.47	0.01	2371.18	10.53
	IPW	5.16	0.02	12.71	2.25
	WLS	-2.95	0.37	3.30	1.47
	DR	-48.66	0.08	1370.91	1.81

Covariate Balancing Propensity Score (CBPS)

- Idea: Estimate propensity score such that covariates are balanced
- Goal: Robust estimation of parametric propensity score model
- Covariate balancing conditions:

$$
\mathbb{E}\left\{\frac{T_{i} X_{i}}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) X_{i}}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0
$$

- Over-identification via score conditions:

$$
\mathbb{E}\left\{\frac{T_{i} \pi_{\beta}^{\prime}\left(X_{i}\right)}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) \pi_{\beta}^{\prime}\left(X_{i}\right)}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0
$$

- Can be interpreted as another covariate balancing condition
- Combine them with the Generalized Method of Moments

Revisiting Kang and Schafer (2007)

Bias

Estimator GLM CBPS1 CBPS2 True

RMSE

GLM CBPS1 CBPS2 True
(1) Both models correct

$n=200$	HT	0.33	2.06	-4.74	1.19	12.61	4.68	9.33	23.93
	IPW	-0.13	0.05	-1.12	-0.13	3.98	3.22	3.50	5.03
	WLS	-0.04	-0.04	-0.04	-0.04	2.58	2.58	2.58	2.58
	DR	-0.04	-0.04	-0.04	-0.04	2.58	2.58	2.58	2.58
$n=1000$	HT	0.01	0.44	-1.59	-0.18	4.92	1.76	4.18	10.47
	IPW	0.01	0.03	-0.32	-0.05	1.75	1.44	1.60	2.22
	WLS	0.01	0.01	0.01	0.01	1.14	1.14	1.14	1.14
	DR	0.01	0.01	0.01	0.01	1.1	1.1	1.1	1.14
(2) Propensity score model correct									
$n=200$	HT	-0.05	1.99	-4.94	-0.14	14.39	4.57	9.39	24.28
	IPW	-0.13	0.02	-1.13	-0.18	4.08	3.22	3.55	4.97
	WLS	0.04	0.04	0.04	0.04	2.51	2.51	2.51	2.51
	DR	0.04	0.04	0.04	0.04	2.51	2.51	2.52	2.51
$n=1000$	HT	-0.02	0.44	-1.67	0.29	4.85	1.77	4.22	10.62
	IPW	0.02	0.05	-0.31	-0.03	1.75	1.45	1.61	2.27
	WLS	0.04	0.04	0.04	0.04	1.14	1.14	1.14	1.14
	DR	0.04	0.04	0.04	0.04	1.14	1.14	1.14	1.14

CBPS Makes Weighting Methods Work Better

Bias

Estimator GLM CBPS1 CBPS2 True
GLM CBPS1 CBPS2 True

(3) Outcome model correct									
	HT	24.25	1.09	-5.42	-0.18	194.58	5.04	10.71	23.24
$n=200$	IPW	1.70	-1.37	-2.84	-0.26	9.75	3.42	4.74	4.93
	WLS	-2.29	-2.37	-2.19	0.41	4.03	4.06	3.96	3.31
	DR	-0.08	-0.10	-0.10	-0.10	2.67	2.58	2.58	2.58
$n=1000$	HT	41.14	-2.02	2.08	-0.23	238.14	2.97	6.65	10.42
	IPW	4.93	-1.39	-0.82	-0.02	11.44	2.01	2.26	2.21
	WLS	-2.94	-2.99	-2.95	0.20	3.29	3.37	3.33	1.47
	DR	0.02	0.01	0.01	0.01	1.89	1.13	1.13	1.13

(4) Both models incorrect

	HT	30.32	1.27	-5.31	-0.38	266.30	5.20	10.62	23.86
$n=200$	IPW	1.93	-1.26	-2.77	-0.09	10.50	3.37	4.67	5.08
	WLS	-2.13	-2.20	-2.04	0.55	3.87	3.91	3.81	3.29
	DR	-7.46	-2.59	-2.13	0.37	50.30	4.27	3.99	3.74
$n=1000$	HT	101.47	-2.05	1.90	0.01	2371.18	3.02	6.75	10.53
	IPW	5.16	-1.44	-0.92	0.02	12.71	2.06	2.39	2.25
	WLS	-2.95	-3.01	-2.98	0.19	3.30	3.40	3.36	1.47
	DR	-48.66	-3.59	-3.79	0.08	1370.91	4.02	4.25	1.81

Causal Inference with Longitudinal Data

- Setup:
- units: $i=1,2, \ldots, n$
- time periods: $j=1,2, \ldots, J$
- fixed J with $n \longrightarrow \infty$
- time-varying binary treatments: $T_{i j} \in\{0,1\}$
- treatment history up to time $j: \bar{T}_{i j}=\left\{T_{i 1}, T_{i 2}, \ldots, T_{i j}\right\}$
- time-varying confounders: $X_{i j}$
- confounder history up to time $j: \bar{X}_{i j}=\left\{X_{i 1}, X_{i 2}, \ldots, X_{i j}\right\}$
- outcome measured at time $J: Y_{i}$
- potential outcomes: $Y_{i}\left(\bar{t}_{J}\right)$
- Assumptions:
(1) Sequential ignorability

$$
Y_{i}\left(\bar{t}_{j}\right) \Perp T_{i j} \mid \bar{T}_{i, j-1}=\bar{t}_{j-1}, \bar{X}_{i j}=\bar{x}_{j}
$$

where $\bar{t}_{J}=\left(\bar{t}_{j-1}, t_{j}, \ldots, t_{J}\right)$
(2) Common support

$$
0<\operatorname{Pr}\left(T_{i j}=1 \mid \bar{T}_{i, j-1}, \bar{X}_{i j}\right)<1
$$

Inverse-Probability-of-Treatment Weighting

- Weighting each observation via the inverse probability of its observed treatment sequence (Robins 1999)
- Inverse-Probability-of-Treatment Weights:

$$
w_{i}=\frac{1}{P\left(\bar{T}_{i J} \mid \bar{X}_{i J}\right)}=\prod_{j=1}^{J} \frac{1}{P\left(T_{i j} \mid \bar{T}_{i, j-1}, \bar{X}_{i j}\right)}
$$

- Stabilized weights:

$$
w_{i}^{*}=\frac{P\left(\bar{T}_{i J}\right)}{P\left(\bar{T}_{i J} \mid \bar{X}_{i J}\right)}
$$

Marginal Structural Models (MSMs)

- Consistent estimation of the marginal mean of potential outcome:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\left\{\bar{T}_{i J}=\bar{t}_{J}\right\} w_{i} Y_{i} \xrightarrow{p} \mathbb{E}\left(Y_{i}\left(\bar{t}_{J}\right)\right)
$$

- In practice, researchers fit a weighted regression of Y_{i} on a function of $\bar{T}_{i J}$ with regression weight w_{i}
- Adjusting for $\bar{X}_{i J}$ leads to post-treatment bias
- MSMs estimate the average effect of any treatment sequence
- Problem: MSMs are sensitive to the misspecification of treatment assignment model (typically a series of logistic regressions)
- The effect of misspecification can propagate across time periods
- Solution: estimate MSM weights so that covariates are balanced

Two Time Period Case

- time 1 covariates $X_{i 1}$: 3 equality constraints

$$
\mathbb{E}\left(X_{i 1}\right)=\mathbb{E}\left[1\left\{T_{i 1}=t_{1}, T_{i 2}=t_{2}\right\} w_{i} X_{i 1}\right]
$$

- time 2 covariates $X_{i 2}$: 2 equality constraints

$$
\mathbb{E}\left(X_{i 2}\left(t_{1}\right)\right)=\mathbb{E}\left[\mathbf{1}\left\{T_{i 1}=t_{1}, T_{i 2}=t_{2}\right\} w_{i} X_{i 2}\left(t_{1}\right)\right]
$$

for $t_{2}=0,1$

Orthogonalization of Covariate Balancing Conditions

Treatment history: $\left(t_{1}, t_{2}\right)$

Time period	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$	Moment condition
	+	+	-	-	$\mathbb{E}\left\{(-1)^{T_{i 1}} w_{i} X_{i 1}\right\}=0$
time 1	+	-	+	-	$\mathbb{E}\left\{(-1)^{T_{i 2}} w_{i} X_{i 1}\right\}=0$
	+	-	-	+	$\mathbb{E}\left\{(-1)^{T_{i 1}+T_{i 2}} w_{i} X_{i 1}\right\}=0$
time 2	+	-	+	-	$\mathbb{E}\left\{(-1)^{T_{i 2}} w_{i} X_{i 2}\right\}=0$
	+	-	-	+	$\mathbb{E}\left\{(-1)^{\left.T_{i 1}+T_{i 2} w_{i} X_{i 2}\right\}=0}\right.$

GMM Estimator (Two Period Case)

- Independence across balancing conditions:

$$
\hat{\beta}=\underset{\beta \in \Theta}{\operatorname{argmin}} \operatorname{vec}(\mathbf{G})^{\top} \widehat{\mathbf{W}}^{-1} \operatorname{vec}(\mathbf{G})
$$

- Sample moment conditions G:

$$
\frac{1}{n} \sum_{i=1}^{n}\left[\begin{array}{ccc}
(-1)^{T_{i 1}} w_{i} X_{i 1} & (-1)^{T_{i 2}} w_{i} X_{i 1} & (-1)^{T_{i 1}+T_{i 2}} w_{i} X_{i 1} \\
0 & (-1)^{T_{i 2}} w_{i} X_{i 2} & (-1)^{T_{i 1}+T_{i 2}} w_{i} X_{i 2}
\end{array}\right]
$$

- Covariance matrix W:

$$
\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left\{\left.\left[\begin{array}{ccc}
1 & (-1)^{T_{i 1}+T_{i 2}} & (-1)^{T_{i 2}} \\
(-1)^{T_{i 1}+T_{i 2}} & 1 & (-1)^{T_{i 1}} \\
(-1)^{T_{i 2}} & (-1)^{T_{i 1}} & 1
\end{array}\right] \otimes w_{i}^{2}\left[\begin{array}{ll}
X_{i 1} X_{i 1}^{\top} & X_{i 1} X_{i 2}^{\top} \\
X_{i 2} X_{i 1}^{\top} & X_{i 2} X_{i 2}^{\top}
\end{array}\right] \right\rvert\, \mathbf{x}_{i}\right\}
$$

Extending Beyond Two Period Case

$$
\begin{aligned}
& T_{i 2}=1 \quad X_{i 3}(1,1) \xlongequal[T_{i 3}=0]{\frac{T_{i 3}=1}{} \quad Y_{i}(1,1,1)} Y_{i}(1,1,0) \\
& \begin{array}{l}
T_{i 1}=1 \\
T_{i 2}=0
\end{array} x_{i 3}(1,0) \xlongequal{\frac{T_{i 3}=1}{T_{i 3}=0} \cdot Y_{i}(1,0,1)} \begin{array}{|}
Y_{i}(1,0,0)
\end{array} \\
& \text { 施 }=0 \quad x_{i 2}(0) \\
& \mathrm{T}_{i 2}=1 \quad x_{i 3}(0,1) \xlongequal{\frac{T_{i 3}=1}{T_{i 3}=0} \cdot} \cdot Y_{i}(0,1,1) \\
& \widetilde{T_{i 2}=0} \quad X_{i 3}(0,0) \xlongequal{\frac{T_{i 3}=1}{T_{i 3}=0} \quad Y_{i}(0,0,1)}
\end{aligned}
$$

Generalization of the proposed method to J periods is in the paper

Orthogonalized Covariate Balancing Conditions

			Treatment History Hadamard Matrix: $\left(t_{1}, t_{2}, t_{3}\right)$								Time	
			$(1,0,0)$	$(0,1,0$	(1,1,0	(0,0,	$(1,0$,	$(0,1$,	(1,1,1)			
$T_{i 1} T_{i 2}$	$T_{\text {i3 }}$	h_{0}	h_{1}	h_{2}	h_{12}	h_{13}	h_{3}	h_{23}	h_{123}	'1	2	3
- -	-	+	+	+	+	+	+	+	+	${ }_{1} \times$	X	x
+ -	-	+	-	+	-	+	-	+	-	$1 \checkmark$	x	x
+	-	+	+	-	-	+	+	-	-	is	\checkmark	x
+ +	-	+	-	-	+	+	-	-	+	is	\checkmark	x
- -	+	+	+	+	+	-	-	-	-	1	\checkmark	\checkmark
+	+	+	-	+	-	-	+	-	+	is	\checkmark	\checkmark
	+	+	+	-	-	-	-	+	+	is	\checkmark	\checkmark
+ +	+	+	-	-	+	-	+	+	-	$1 /$	\checkmark	\checkmark

- The mod 2 discrete Fourier transform:

$$
\mathbb{E}\left\{(-1)^{T_{i 1}+T_{i 3}} w_{i} X_{i j}\right\}=0 \quad \text { (6th row) }
$$

- Connection to the fractional factorial design
- "Fractional" = past treatment history
- "Factorial" = future potential treatments

GMM in the General Case

- The same setup as before:

$$
\hat{\beta}=\underset{\beta \in \Theta}{\operatorname{argmin}} \operatorname{vec}(\mathbf{G})^{\top} \widehat{\mathbf{W}}^{-1} \operatorname{vec}(\mathbf{G})
$$

where

$$
\begin{aligned}
\mathbf{G} & =\frac{1}{n} \sum_{i=1}^{n}\left(M_{i}^{\top} \otimes w_{i} X_{i}\right) \mathbf{R} \\
\mathbf{W} & =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left(M_{i} M_{i}^{\top} \otimes w_{i}^{2} X_{i} X_{i}^{\top} \mid X_{i}\right)
\end{aligned}
$$

- M_{i} is the $\left(2^{J}-1\right)$ th row of model matrix based on the design matrix in Yates order
- For each time period j, define the selection matrix \mathbf{R}

$$
\mathbf{R}=\left[\begin{array}{lll}
\mathbf{R}_{1} & \ldots & \mathbf{R}_{J}
\end{array}\right] \quad \text { where } \quad \mathbf{R}_{j}=\left[\begin{array}{cc}
\mathbf{0}_{2^{j-1} \times 2^{j-1}} & \mathbf{0}_{2^{j-1} \times\left(2^{J}-2^{j-1}\right)} \\
\mathbf{0}_{\left(2^{J}-2^{j-1}\right) \times 2^{j-1}} & \mathbf{I}_{2^{J}-2^{j-1}}
\end{array}\right]
$$

Low-rank Approximation

- When the number of time periods J increases, the dimensionality of optimal \mathbf{W}, which is equal to $\left(2^{J}-1\right) \times J K$, exponentially increases
- Low-rank approximation:

$$
\widetilde{\mathbf{W}}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{l} \otimes \widetilde{X}_{i} \widetilde{X}_{i}^{\top}=\mathbf{I} \otimes \widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}}
$$

where $\widetilde{X}_{i}=w_{i} X_{i}$

- Then,

$$
\begin{aligned}
\hat{\beta} & =\underset{\beta \in \Theta}{\operatorname{argmin}} & \operatorname{vec}(\mathbf{G})^{\top}\left\{\mathbf{I} \otimes \widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}}\right\}^{-1} \operatorname{vec}(\mathbf{G}) \\
& =\underset{\beta \in \Theta}{\operatorname{argmin}} & \operatorname{trace}\left\{\mathbf{R}^{\top} \mathbf{M}^{\top} \widetilde{\mathbf{X}}\left(\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}}\right)^{-1} \widetilde{\mathbf{X}}^{\top} \mathbf{M R}\right\}
\end{aligned}
$$

A Simulation Study with Correct Lag Structure

- 3 time periods
- Treatment assignment process:

- Outcome: $Y_{i}=250-10 \cdot \sum_{j=1}^{3} T_{i j}+\sum_{j=1}^{3} \delta^{\top} X_{i j}+\epsilon_{i}$
- Functional form misspecification by nonlinear transformation of $X_{i j}$

A Simulation Study with Incorrect Lag Structure

- 3 time periods
- Treatment assignment process:

- The same outcome model
- Incorrect lag: only adjusts for previous lag but not all lags
- In addition, the same functional form misspecification of $X_{i j}$

Empirical Illustration: Negative Advertisements

- Electoral impact of negative advertisements (Blackwell, 2013)
- For each of 114 races, 5 weeks leading up to the election
- Outcome: candidates' voteshare
- Treatment: negative $\left(T_{i t}=1\right)$ or positive $\left(T_{i t}=0\right)$ campaign
- Time-varying covariates: Democratic share of the polls, proportion of voters undecided, campaign length, and the lagged and twice lagged treatment variables for each week
- Time-invariant covariates: baseline Democratic voteshare, baseline proportion undecided, and indicators for election year, incumbency status, and type of office
- Original study: pooled logistic regression with a linear time trend
- We compare period-by-period GLM with CBPS

Covariate Balance

All Time Periods

Time 3

Time 1

Time 4

Time 2

Time 5

	GLM	CBPS	CBPS (approx.)	GLM	CBPS	CBPS (approx.)
(Intercept)	55.69^{*}	57.15^{*}	57.4^{*}	55.41^{*}	57.06^{*}	57.73^{*}
	(4.62)	(1.84)	(2.12)	(3.09)	(1.68)	(1.88)
Negative	2.97	5.82	3.15			
(time 1)	(4.55)	(5.30)	(3.76)			
Negative	3.53	2.71	5.02			
(time 2)	(9.71)	(9.26)	(8.55)			
Negative	-2.77	-3.89	-3.63			
(time 3)	(12.57)	(10.94)	(11.46)			
Negative	-8.28	-9.75	-10.39			
(time 4)	(10.29)	(7.79)	(8.79)			
Negative	-1.53	-1.95^{*}	-2.13^{*}			
(time 5)	(0.97)	(0.96)	(0.98)			
Negative				-1.14	-1.35^{*}	-1.51^{*}
\quad (cumulative)				(0.68)	(0.39)	(0.43)
	0.04	0.14	0.13	0.02	0.10	0.10
R^{2}	F statistics	0.95	3.39	3.32	2.84	12.29

Concluding Remarks

- Covariate balancing propensity score:
(1) optimizes covariate balance under the GMM/EL framework
(2) is robust to model misspecification
(3) improves inverse probability weighting methods
- Ongoing work:
(1) Nonparametric CBPS
(2) General treatment regimes
(3) Generalizing experimental and instrumental variable estimates
(4) Theory for choosingn optimal covariate balance functions
- Open-source software, CBPS: R Package for Covariate Balancing Propensity Score, is available at CRAN

References

(1) "Covariate Balancing Propensity Score" J. of the Royal Statistical Society, Series B (Methodological) (2014).
(2) "Robust Estimation of Inverse Probability Weights for Marginal Structural Models" Journal of the American Statistical Association (2015).
(3 "Covariate Balancing Propensity Score for General Treatment Regimes" Working paper available at http://imai.princeton.edu

Send comments and suggestions to kimai@Princeton.Edu

