Statistical Analysis of List Experiments

Kosuke Imai

Princeton University

Joint work with Graeme Blair

July 4, 2012

Kosuke Imai (Princeton)

Motivation

- Validity of much empirical social science research relies upon accuracy of *self-reported* behavior and beliefs
- Challenge: eliciting truthful answers to sensitive survey questions e.g., racial prejudice, corruptions, fraud, support for militant groups
- Social desirability bias, privacy and safety concerns
- Lies and non-responses
- Solution: Indirect rather than direct questioning
 - Randomization: Randomized response technique
 - Aggregation: List experiment (item count technique)

List Experiment: An Example

- The 1991 National Race and Politics Survey (Sniderman et al.)
- Randomize the sample into the treatment and control groups
- The script for the control group

Now I'm going to read you three things that sometimes make people angry or upset. After I read all three, just tell me HOW MANY of them upset you. (I don't want to know which ones, just how many.)

(1) the federal government increasing the tax on
gasoline;

(2) professional athletes getting million-dollar-plus
salaries;

(3) large corporations polluting the environment.

List Experiment: An Example

- The 1991 National Race and Politics Survey (Sniderman et al.)
- Randomize the sample into the treatment and control groups
- The script for the treatment group

Now I'm going to read you four things that sometimes make people angry or upset. After I read all four, just tell me HOW MANY of them upset you. (I don't want to know which ones, just how many.)

(1) the federal government increasing the tax on
gasoline;

(2) professional athletes getting million-dollar-plus
salaries;

(3) large corporations polluting the environment;

(4) a black family moving next door to you.

Methodological Challenges

• List experiment is becoming popular:

Kuklinski et al., 1997a,b; Sniderman and Carmines, 1997; Gilens et al., 1998; Kane et al., 2004; Tsuchiya et al., 2007; Streb et al., 2008; Corstange, 2009; Flavin and Keane, 2010; Glynn, 2010; Gonzalez-Ocantos et al., 2010; Holbrook and Krosnick, 2010; Janus, 2010; Redlawsk et al., 2010; Coutts and Jann, 2011

- Standard practice: Use difference-in-means to estimate the proportion of those who answer yes to sensitive item
- Getting more out of list experiments:
 - Who are more likely to answer yes?
 - Who are answering differently to direct and indirect questioning?
 - Oan we study multiple sensitive items in one survey?
 - Can we detect failures of list experiments?
 - San we correct violations of key assumptions?
- Recoup the efficiency loss due to indirect questioning

Overview of the Project

- Goals:
 - Develop *multivariate regression analysis* methodology
 - 2 Develop statistical tests to detect failures of list experiments
 - Develop methods to correct deviations from key assumption
 - Develop open-source software to implement the proposed methods
 - Solutions in Afghanistan (joint work with J. Lyall) and Nigeria

References:

- Blair, G. and K. Imai. "Statistical Analysis of List Experiments." *Political Analysis*
- Blair, G. and K. Imai. list: Statistical Methods for the Item Count Technique and List Experiments available at http://cran.r-project.org/package=list

- Randomization of the Treatment
- No Design Effect: The inclusion of the sensitive item does not affect answers to control items
- No Liars: Answers about the sensitive item are truthful

Under these assumptions, difference-in-means estimator is unbiased

New Multivariate Regression Estimators

Notation:

- J: number of control items
- N: number of respondents
- T_i : binary treatment indicator (1 = treatment, 0 = control)
- X_i: pre-treatment covariates
- Y_i: outcome variable
- The nonlinear least squares regression model:

$$Y_{i} = \underbrace{f(X_{i}, \gamma)}_{control items} + \underbrace{T_{i} \cdot g(X_{i}, \delta)}_{sensitive item} + \epsilon_{i}$$

- Differeince-in-means: no covariate
- Linear model: $f(x, \gamma) = x^{\top} \gamma$ and $g(x, \delta) = x^{\top} \delta$
- Logit model: $f(x, \gamma) = J \cdot \text{logit}^{-1}(x^{\top}\gamma)$ and $g(x, \delta) = \text{logit}^{-1}(x^{\top}\delta)$
- Two-step estimation with appropriate standard error

Extracting More Information from List Experiments

- Define a type of each respondent by
 - total number of yes for control items $Y_i(0)$
 - truthful answer to the sensitive item Z_i^*
- A total of $(2 \times (J+1))$ types
- Example: three control items (J = 3)

Y_i	Treatment group	Control group		
4	(3,1)			
3	(2,1) (3,0)	(3,1) (3,0)		
2	(1,1) (2,0)	(2,1) (2,0)		
1	(0,1) (1,0)	(1,1) (1,0)		
0	(0,0)	(0,1) (0,0)		

Extracting More Information from List Experiments

- Define a type of each respondent by
 - total number of yes for control items $Y_i(0)$
 - truthful answer to the sensitive item Z_i^*
- A total of $(2 \times (J+1))$ types
- Example: three control items (J = 3)

Y_i	Treatment group	Control group		
4	(3,1)			
3	(2,1) (3,0)	(3,1) (3,0)		
2	(1,1) (2,0)	(2,1) (2,0)		
1	(0,1) (1,0)	(1,1) (1,0)		
0	(0,0)	(0,1) (0,0)		

• Joint distribution of $(Y_i(0), Z_i^*)$ is identified

• Model for sensitive item as before: e.g., logistic regression

$$\Pr(Z_{i,J+1}^* = 1 \mid X_i = x) = \log i t^{-1} (x^{\top} \delta)$$

• Model for control items given the response to sensitive item: e.g., binomial or beta-binomial logistic regression

$$\Pr(Y_i(0) = y \mid X_i = x, Z_{i,J+1}^* = z) = J \times \operatorname{logit}^{-1}(x^\top \psi_z)$$

The Likelihood Function

• Mixture structure:

$$\begin{split} &\prod_{i\in\mathcal{J}(1,0)}(1-g(X_{i},\delta))h_{0}(0;X_{i},\psi_{0})\prod_{i\in\mathcal{J}(1,J+1)}g(X_{i},\delta)h_{1}(J;X_{i},\psi_{1})\\ &\times \prod_{y=1}^{J}\prod_{i\in\mathcal{J}(1,y)}\left\{g(X_{i},\delta)h_{1}(y-1;X_{i},\psi_{1})+(1-g(X_{i},\delta))h_{0}(y;X_{i},\psi_{0})\right\}\\ &\times \prod_{y=0}^{J}\prod_{i\in\mathcal{J}(0,y)}\left\{g(X_{i},\delta)h_{1}(y;X_{i},\psi_{1})+(1-g(X_{i},\delta))h_{0}(y;X_{i},\psi_{0})\right\} \end{split}$$

where $\mathcal{J}(t, y)$ represents a set of respondents with $(T_i, Y_i) = (t, y)$

• Maximizing this function is difficult

Missing Data Framework

- Consider $Z_{i,J+1}^*$ as partially missing data
- The complete-data likelihood has a much simpler form:

$$\prod_{i=1}^{N} \left\{ g(X_{i},\delta)h_{1}(Y_{i}-1;X_{i},\psi_{1})^{T_{i}}h_{1}(Y_{i};X_{i},\psi_{1})^{1-T_{i}} \right\}^{Z_{i,J+1}^{*}} \\ \times \left\{ (1-g(X_{i},\delta))h_{0}(Y_{i};X_{i},\psi_{0}) \right\}^{1-Z_{i,J+1}^{*}}$$

- The EM algorithm: only separate optimization of $g(x, \delta)$ and $h_z(y; x, \psi_z)$ is required
 - weighted logistic regression
 - weighted binomial logistic regression
- Easy to develop the Gibbs sampling algorithm

Empirical Application: Racial Prejudice in the US

- Kuklinski *et al.* (1997 JOP): Southern whites are more prejudiced against blacks than non-southern whites no "New South"
- The limitation of the original analysis:

So far our discussion has implicitly assumed that the higher level of prejudice among white southerners results from something uniquely "southern," what many would call southern culture. This assumption could be wrong. If white southerners were older, less educated, and the like – characteristics normally associated with greater prejudice – then demographics would explain the regional difference in racial attitudes

• Need for a multivariate regression analysis

Estimated Proportion of Prejudiced Whites

MLE yields more efficient estimates

Kosuke Imai (Princeton)

- The 1991 National Race and Politics Survey includes another treatment group with the following sensitive item
 - (4) "black leaders asking the government for affirmative action"
- Use of the same control items permits joint-modeling
- Same assumptions: No Design Effect and No Liars
- Extension to the design with K sensitive items

Multivariate Regression Results

- How do the patterns of generational changes differ between South and Non-South?
- Original analysis dichotomized the age variable without controlling for other factors

		Sensitiv	Control Items			
	Black Family		Affirmative Action			
Variables	riables est. s.e. est. s		s.e.	est.	s.e.	
intercept	-7.575	1.539	-5.270	1.268	1.389	0.143
male	1.200	0.569	0.538	0.435	-0.325	0.076
college	-0.259	0.496	-0.552	0.399	-0.533	0.074
age	0.852	0.220	0.579	0.147	0.006	0.028
South	4.751	1.850	5.660	2.429	-0.685	0.297
South × age	-0.643	0.347	-0.833	0.418	0.093	0.061
control items $Y_i(0)$	0.267	0.252	0.991	0.264		

Generational Changes in South and Non-South

- Age is important even after controling for gender and education
- Gender is not, contradicting with the original analysis

Measuing Social Desirability Bias

• The 1994 Multi-Investigator Survey (Sniderman et al.) asks list experiment question and later a direct sensitive question:

Now I'm going to ask you about another thing that sometimes makes people angry or upset.

Do you get angry or upset when black leaders ask the government for affirmative action?

● Difference between direct and indirect responses
 ⇒ measure of social desirability bias

Differences for the Affirmative Action Item

When Can List Experiments Fail?

- Recall the two assumptions:
 - No Design Effect: The inclusion of the sensitive item does not affect answers to non-sensitive items
 - No Liars: Answers about the sensitive item are truthful
- Design Effect:
 - Respondents evaluate non-sensitive items relative to sensitive item
- Lies:
 - · Ceiling effect: too many yeses for non-sensitive items
 - Floor effect: too many noes for non-sensitive items
- Both types of failures are difficult to detect
- Importance of choosing non-sensitive items
- Question: Can these failures be addressed statistically?

Hypothesis Test for List Experiments Failures

Under the null hypothesis of no design effect and no liars, we expect all types (y, 1) > 0 and (y, 0) > 0

$$\pi_1 = \Pr(\text{type} = (y, 1)) = \Pr(Y_i \le y \mid T_i = 0) - \Pr(Y_i \le y \mid T_i = 1) \ge 0$$

$$\pi_0 = \Pr(type = (y, 0)) = \Pr(Y_i \le y \mid T_i = 1) - \Pr(Y_i < y \mid T_i = 0) \ge 0$$

- Alternative hypothesis: At least one is negative
- A multivariate one-sided LR test for each *t* = 0, 1

$$\hat{\lambda}_t = \min_{\pi_t} (\hat{\pi}_t - \pi_t)^\top \widehat{\Sigma}_t^{-1} (\hat{\pi}_t - \pi_t), \text{ subject to } \pi_t \geq 0,$$

- $\hat{\lambda}_t$ follows a mixture of χ^2
- Difficult to characterize least favorable values under the joint null
- Bonferroni correction: Reject the joint null if $min(\hat{p}_0, \hat{p}_1) \le \alpha/2$
- GMS selection algorithm to increase statistical power

The Racial Prejudice Data Revisited

• Did the negative proportion arise by chance?

	Observed Data				Estimated Proportion of			
	Control		Treatment		Respondent Types			
Response	counts	prop.	counts	prop.	$\hat{\pi}_{y0}$	s.e.	$\hat{\pi}_{y1}$	s.e.
0	8	1.4%	19	3.0%	3.0%	0.7	-1.7%	0.8
1	132	22.4	123	19.7	21.4	1.7	1.0	2.4
2	222	37.7	229	36.7	35.7	2.6	2.0	2.8
3	227	38.5	219	35.1	33.1	2.2	5.4	0.9
4			34	5.4				
Total	589		624		93.2		6.8	

• *p*-value = 0.022

Statistical Power of the Proposed Test

- Power is highly assymetric
- Depends on sensitive and control items
- Implications
 - interpretation
 - e design

Potential liars:

Y _i	Treatment group	Control group			
4	(3,1)				
3	(2,1) (3,0) <mark>(3,1)</mark> *	(3,1) (3,0)			
2	(1,1) (2,0)	(2,1) (2,0)			
1	(0,1) (1,0)	(1,1) (1,0)			
0	(0,0) <mark>(0,1)</mark> *	(0,1) (0,0)			

- Proposed strategy: model ceiling and/or floor effects under an additional assumption
- Identification assumption: conditional independence between items given covariates
- ML regression estimator can be extended to this situation
- A similar strategy applicable to design effects

					Both Ceiling	
Ceiling Effects Alone		Floor Effec	ts Alone	and Floor Effects		
Variables	est.	s.e.	est.	s.e.	est.	s.e.
Intercept	-1.291	0.558	-1.251	0.501	-1.245	0.502
Age	0.294	0.101	0.314	0.092	0.313	0.092
College	-0.345	0.336	-0.605	0.298	-0.606	0.298
Male	0.038	0.346	-0.088	0.300	-0.088	0.300
South	1.175	0.480	0.682	0.335	0.681	0.335
Prop. of lia	ars	1		1		
Ceiling	0.0002	0.0017		1	0.0002	0.0016
Floor		1	0.0115	0.0000	0.0115	0.0000

- Essentially no ceiling and floor effects
- Main conclusion for the affirmative action item seems robust

Concluding Remarks and Practical Suggestions

- List experiments: alternative to the randomized response method
- Advantages: easy to use, easy to understand
- Challenges: loss of information, violation of assumptions
- We develop a set of methods for list experiments
- Suggestions for analysis:
 - Estimate proportions of types and test design effects
 - 2 Conduct multivariate regression analyses
 - Investigate the robustness of findings to ceiling and floor effects
- Suggestions for design:
 - Select control items to avoid skewed response distribution
 - Avoid control items that are ambiguous and generate weak opinion
 - Conduct a pilot study and maximize statistical power