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High-Dimensional Causal Inference

1 Treatment effect heterogeneity

How do treatment effects vary across individuals?
Who benefits from (or is harmed by) the treatment?

2 Treatment heterogeneity

What aspects of a treatment are responsible for causal effects?
What combination of treatments is efficacious?

3 Individualized treatment regimes

What combination of treatments is optimal for a given individual?

Causal prediction vs. causal learning in high-dimension

Importance of interpretability in high-dimension
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Factorial Designs with Many Treatments

The most basic form of high-dimensional causal inference

Many treatments, each having multiple levels

A motivating application: Conjoint analysis (Hainmueller et al. 2014)

survey experiments to measure immigration preferences
a representative sample of 1,396 American adults
each respondent evaluates 5 pairs of immigrant profiles

gender2, education7, origin10, experience4, plan4, language4,
profession11, application reason3, prior trips5

Over 1 million treatment combinations!

What combinations of immigrant characteristics make them preferred?

Too many treatment combinations  Need for an effective summary

Many potential applications in academia and industry
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Machine Learning and Causal Inference

How should we analyze the data from a factorial randomized
experiment with many treatments?

Regression model: E(Y | T) = f (T)

There are many machine learning methods to estimate this model

In this setting, causal inference is a prediction problem
E(Y (t)) = E(Y | T = t) = f (t)

But, how do we interpret these models?

Scientists wish to understand the causal structure
1 Predict E(Y (t)) using each treatment combination t and look at what

values of t yield high/low predicted values of Y
 Finding patterns is difficult in high dimension

2 Use a sparse regression model
 Difficult to interpret interaction terms (lack of invariance to the
baseline condition)

Causal testing vs. causal exploration
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Causal Effects with Two Multi-valued Treatment Variables

1 Average Treatment Combination Effect (ATCE):

Average effect of treatment combination (A,B) = (a`, bm) relative to
the baseline condition (A,B) = (a0, b0)

τ(a`, bm; a0, b0) ≡ E{Y (a`, bm)− Y (a0, b0)}

Which treatment combination is most efficacious?

2 Average Marginal Treatment Effect (AMTE; Hainmueller et al. 2014):

Average effect of treatment A = a` relative to the baseline condition
A = a0 averaging over the other treatment B

ψ(a`, a0) ≡
∫
B
E{Y (a`,B)− Y (a0,B)}dF (B)

Which treatment is effective on average?

Other treatments can be integrated out
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3 Average Marginal Treatment Interaction Effect (AMTIE):

π(a`, bm; a0, b0) ≡ τ(a`, bm; a0, b0)︸ ︷︷ ︸
ATCE of (A,B) = (a`, bm)

− ψ(a`, a0)︸ ︷︷ ︸
AMTE of a`

− ψ(bm, b0)︸ ︷︷ ︸
AMTE of bm

Additional effect induced by A = a` and B = bm together beyond the
separate effect of A = a` and that of B = bm

Unlike the standard interaction effects, the AMTIEs are invariant to
the choice of baseline category

However, the AMTEs and AMTIEs do depend on the distribution of
treatment assignment

Two solutions:

1 use the treatment assignment probabilities from the experiment
2 use the distribution of treatments in the target population
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Causal Interaction in High-Dimension

Definition: the difference between the ATCE and the sum of
lower-order AMTIEs

Example: 3-way AMTIE, π1:3(t1, t2, t3; t01, t02, t03), equals

τ1:3(t1, t2, t3; t01, t02, t03)︸ ︷︷ ︸
ATCE

−
{
π1:2(t1, t2; t01, t02) + π2:3(t2, t3; t02, t03) + π1:3(t1, t3; t01, t03)

}︸ ︷︷ ︸
sum of 2-way AMTIEs

−
{
ψ(t1; t01) + ψ(t2; t02) + ψ(t3; t03)

}︸ ︷︷ ︸
sum of (1-way) AMTEs

Contrast this with the standard higher-order interaction:
3-way interaction effect = difference between 2-way interaction effects
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    Gender:Origin:Plan

    Origin:Experience:Plan

    Education:Origin:Experience

    Education:Origin:Plan

    Gender:Origin:Experience

    Gender:Experience:Plan

    Education:Gender:Plan

    Education:Gender:Experience

    Education:Experience:Plan

    Education:Gender:Origin

Three−way Effects:

    Gender:Experience

    Gender:Origin

    Gender:Plan

    Education:Gender

    Education:Plan

    Experience:Plan

    Education:Origin

    Origin:Plan

    Education:Experience

    Origin:Experience

Two−way Effects:

    Gender

    Experience

    Origin

    Education

    Plan

One−way Effects:

0.0 0.1 0.2
Ranges of the K−way AMTIE

Sparse regression with
one-way, two-way, and
three-way effects

Range of AMTIEs:
importance of each
factor and factor
interaction

Sparcity-of-effects
principle

gender appears to play
a significant role in
three-way interactions
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3-way Interaction (education × gender × origin)

τ(Graduate, Male, India; Graduate, Female, India)︸ ︷︷ ︸
7.46

(n = 52; n = 40)

= ψ(Male; Female)︸ ︷︷ ︸
−0.77

+π(Graduate, Male; Graduate, Female)︸ ︷︷ ︸
−0.34

+π(Male, India; Female, India)︸ ︷︷ ︸
1.56

+π(Graduate, Male, India; Graduate, Female, India)︸ ︷︷ ︸
7.01
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τ(High school, Male, Germany; High school, Female, Germany)︸ ︷︷ ︸
−11.52

(n = 41; n = 56)

= ψ(Male; Female)︸ ︷︷ ︸
−0.77

+π(High school, Male; High school, Female)︸ ︷︷ ︸
−0.67

+π(Male, Germany; Female, Germany)︸ ︷︷ ︸
−3.34

+π(High school, Male,Germany; High school, Female,Germany)︸ ︷︷ ︸
−6.74

.
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Challenges of High-dimensional Causal Inference

Estimation and inference  machine learning and statistics

Interpretation  causal inference

Experimental design

Multi-armed bandits in high-dimension
More noise  sensitivity to the choice of tuning parameter
Linear UCB with variable selection  attains oracle properties
Issues of dynamic variable selection in high-dimension
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