Causal Interaction in Factorial Experiments: Application to Conjoint Analysis

Kosuke Imai

Department of Government Department of Statistics Harvard University

Talk at the Harvard Data Science Initiative Annual Conference

October 18, 2018

Causal Heterogeneity and Interaction Effects

Moderation:

- How does the effect of a treatment vary across individuals?
- Interaction between the treatment variable and pre-treatment covariates

② Causal interaction:

- What combination of treatments is efficacious?
- Interaction among multiple treatment variables

Conjoint Analysis

- Survey experiments with a factorial design
- Respondents evaluate several pairs of randomly selected profiles defined by multiple factors
- Frequently used for consumer research
- Social scientists use it to analyze multidimensional preferences
- Example: Immigration preference (Hopkins and Hainmueller 2014)
 - representative sample of 1,407 American adults
 - each respondent evaluates 5 pairs of immigrant profiles
 - gender², education⁷, origin¹⁰, experience⁴, plan⁴, language⁴, profession¹¹, application reason³, prior trips⁵
 - What combinations of immigrant characteristics do Americans prefer?
 - High dimension: over 1 million treatment combinations
- Methodological challenges:
 - $\bullet\,$ Many interaction effects \rightsquigarrow false positives, difficulty of interpretation
 - Very few applied researchers study interaction

The Methodological Contributions

• New causal estimand: Average Marginal Interaction Effect (AMIE)

- relative magnitude does not depend on baseline condition
- intuitive interpretation even for high dimension
- estimation using ANOVA with weighted zero-sum constraints
- regularization done directly on AMIEs

Omparison with the conventional interaction effect:

- lack of invariance to the choice of baseline condition
- difficulty of interpretation for higher-order interaction

Factorial Experiments with Two Treatments

• Two factorial treatments (e.g., gender and race):

$$A \in \mathcal{A} = \{a_0, a_1, \dots, a_{L_A-1}\}$$
$$B \in \mathcal{B} = \{b_0, b_1, \dots, b_{L_B-1}\}$$

Assumption: Full factorial design

Randomization of treatment assignment

$$\{Y(a_{\ell}, b_m)\}_{a_{\ell} \in \mathcal{A}, b_m \in \mathcal{B}} \perp \{A, B\}$$

In Non-zero probability for all treatment combination

 $\Pr(A = a_{\ell}, B = b_m) > 0 \text{ for all } a_{\ell} \in \mathcal{A} \text{ and } b_m \in \mathcal{B}$

Main Causal Estimands in Factorial Experiments

- Average Combination Effect (ACE):
 - Average effect of treatment combination (A, B) = (a_ℓ, b_m) relative to the baseline condition (A, B) = (a₀, b₀)

$$\tau_{AB}(a_{\ell}, b_m; a_0, b_0) = \mathbb{E}\{Y(a_{\ell}, b_m) - Y(a_0, b_0)\}$$

- Effect of being Asian male
- Average Marginal Effect (AME; Hainmueller et al. 2014; Dasgupta et al. 2015):
 - Average effect of treatment $A = a_{\ell}$ relative to the baseline condition $A = a_0$ averaging over the other treatment B

$$\psi_A(a_\ell,a_0) = \int \mathbb{E}\{Y(a_\ell,B)-Y(a_0,B)\}dF(B)$$

• Effect of being male averaging over race

The New Causal Interaction Effect

• Average Marginal Interaction Effect (AMIE):

$$\pi_{AB}(a_{\ell}, b_m; a_0, b_0) = \underbrace{\tau_{AB}(a_{\ell}, b_m; a_0, b_0)}_{\text{ACE of } (a_{\ell}, b_m)} - \underbrace{\psi_A(a_{\ell}, a_0)}_{\text{AME of } a_{\ell}} - \underbrace{\psi_B(b_m, b_0)}_{\text{AME of } b_m}$$

- Interpretation: additional effect induced by $A = a_{\ell}$ and $B = b_m$ together beyond the separate effect of $A = a_{\ell}$ and that of $B = b_m$
- Additional effect of being Asian male beyond the sum of separate effects for being male and being Asian
- Invariance: *relative magnitude* of AMIE does not depend on the choice of baseline condition
- Generalizable to higher-order interaction
- ANOVA with direct regularization on AMEs and AMIEs

Conjoint Analysis of Ethnic Voting in Africa

- Ethnic voting and accountability (Carlson 2015, World Politics)
- Do voters prefer candidates of same ethnicity regardless of their prior performance? Do ethnicity and performance interact?

- Conjoint analysis in Uganda: 547 voters from 32 villages
- Each voter evaluates 3 pairs of hypothetical candidates
- 5 factors: Coethnicity², Prior record², Prior office⁴, Platform³, Education⁸

Ranges of Estimated AMEs and AMIEs

		Selection
	Range	prob.
AME		
Record	0.122	1.00
Coethnicity	0.053	1.00
Platform	0.023	0.93
Degree	0.000	0.33
AMIE		
Coethnicity imes Record	0.053	1.00
Record $ imes$ Platform	0.030	0.92
Platform imes Coethnic	0.008	0.64
Coethnicity imes Degree	0.000	0.62
$Platform \times Degree$	0.000	0.35
Record \times Degree	0.000	0.09

• Factor selection probability based on bootstrap

Effect of Regularization on AMIEs

Without Regularization

With Regularization

Kosuke Imai (Harvard Gov/Stat)

Causal Interaction

Concluding Remarks

- Interaction effects play an essential role in causal heterogeneity
 - 1 moderation
 - 2 causal interaction
- Randomized experiments with a factorial design
 - useful for testing multiple treatments and their interactions
 - 2 social science applications: audit studies, conjoint analysis
 - Ochallenge: estimation and interpretation in high dimension
- Average Marginal Interaction Effect (AMIE)
 - invariant to baseline condition
 - **2** straightforward interpretation even for high order interaction
 - enables regularization through ANOVA
- Open questions:
 - designing factorial experiments
 - combining moderation and causal interaction

References

- Egami, Naoki and Kosuke Imai. "Causal Interaction in Factorial Experiments: Application to Conjoint Analysis." Journal of the American Statistical Association, Forthcoming
- Egami, Naoki, Marc Ratkovic, and Kosuke Imai. "FindIt: Finding Heterogeneous Treatment Effects." R package available at CRAN

Send comments and suggestions to Imai@Harvard.Edu