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Motivation

Increasing availability of unstructured data in social sciences
don’t come in a nice matrix form! survey, official statistics
text, images, audio, video, etc.

How should we draw causal inference from these new types of data?

Causal inference with spatio-temporal data
a time series of maps as data
treatment and outcome event locations in a continuous space
applications: crime incidents, disease outbreaks, etc.

Methodological challenges
1 spillover effects over space
2 carryover effects over time
3 infinitely many possible treatment and outcome locations

Current practice
1 arbitrary discretization of space
2 assumptions about spillover and carryover effects

Kosuke Imai (Harvard) Spatio-temporal Causal Inference Applied Stats (April 8, 2020) 2 / 24



Impacts of Airstrikes on Insurgent Violence in Iraq

Airstrikes as a principal tool for combating insurgency in civil wars
Debate: whether or not airstrikes reduce subsequent insurgent attacks
(e.g., Kocher et al. 2011; Dell and Querubin 2018; Lyall 2019; Mir and Moore 2019)

Methodological limitations:
discretize continuous space into aggregate geographical units
simplifying assumptions about spillover and carryover effects

American air campaign in Iraq:
declassified USAF data from Jan. 2007 to July 2008 (“surge” period)
daily data with precise geolocation for airstrikes and insurgent attacks

Drivers of airstrikes:
prior patterns of insurgent attacks and airstrikes
presence of American forces
settlement patterns and road networks
economic aid
intelligence about high-value targets (small fraction)
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Airstrikes
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Contributions

Causal inference with point process treatment and outcome
impossible to estimate causal effects of each treatment event

unrestricted spillover and carryover effects
probability of each treatment realization is zero  lack of overlap

stochastic intervention based on the distribution of treatments
distribution of airstrikes as a military strategy

Causal estimands under stochastic intervention
expected number of outcome events within a region of interest
various stochastic interventions

1 change the dosage while keeping the distribution identical
2 change the distribution while keeping the overall dosage constant
3 intervention over multiple time periods

The proposed IPW (inverse probability of treatment) estimator
overlap and unconfoundedness assumptions
consistency and asymptotic normality

Simulation studies and empirical application
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The Setup

T time periods: t = 1, 2, . . . ,T
Treatment variable

Ω: set of all possibly infinite locations that can receive the treatment
Wt(s) ∈ {0, 1}: binary treatment indicator for location s at time t
Wt = {Wt(s) : s ∈ Ω} ∈ W: treatment location map at time t
SWt = {s ∈ Ω : Wt(s) = 1}: set of treatment-active locations at time t
with |Swt | <∞
W t = (W1,W2, . . . ,Wt): observed treatment history up to time t

Outcome variable
Yt(s), Yt , and Y t can be similarly defined
Potential outcome: Yt(w t) where wt ∈ W is a realized treatment and
w t = (w1,w2, . . . ,wt) ∈ W t is a treatment history realization at time t
Observed outcome: Yt = Yt(W t)
SYt(w t): set of outcome-active locations under treatment history w t

History of all potential outcomes up to time t:
Y t = {Yt′(w t′) : w t′ ∈ W t′ , t ′ ≤ t}

Time-varying confounders: Xt , Xt , Xt(w t−1), and X t
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Stochastic Intervention

Stochastic intervention: any distribution of treatment can be used
We consider Poisson point process Fh

homogeneous Poisson point process with intensity h:
For any disjoint region B1,B2, . . . ,Bn ⊂ Ω, the number of events in
each region Bi

NBi (W )
indep.∼ Poisson(h|Bi |)

non-homogeneous Poisson point process with intensity function h(ω):

NBi (W )
indep.∼ Poisson

(∫
Bi

h(ω)dω

)
Example:α = 0 α = 1 α = 2 α = 3

0.0 0.6 1.2 1.9 2.5 3.1 3.7 4.3 4.9 5.6 6.2
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Causal Estimands

Expected number of outcome-active locations in region B at time t
under stochastic intervention Fh conducted at time t

NBt(Fh) =

∫
W

NB(Yt(W t−1,wt))dFh(wt)

Further average this quantity over time:

NB(Fh) =
1
T

T∑
t=1

NBt(Fh)

We can compare the different interventions:

τB(Fh′ ,Fh) = NB(Fh′)− NB(Fh)
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Stochastic Intervention over Multiple Time Periods

Consider a non-dynamic stochastic intervention over M time periods

Fh = Fh1 × · · · × FhM where h = (h1, h2, . . . , hM)

Expected number of outcome-active locations in region B at time t
under stochastic intervention Fh conducted from time t −M + 1 to t

NBt(Fh) =

∫
W
· · ·
∫
W

NB(Yt(W t−M ,wt−M+1, . . . ,wt))

dFhM (wt−M+1) · · · dFh1(wt)

Average this quantity over time:

NB(Fh) =
1

T −M + 1

T∑
t=M

NBt(Fh)

Comparison of different interventions:

τB(Fh′ ,Fh) = NB(Fh′)− NB(Fh)

e.g., lagged effects with hM 6= h′M and h−M = h′−M
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Assumptions

1 Unconfoundedness: treatment is independent of all potential (past and
future) paths for the outcome and time-varying confounders
conditional on the observed history

f (Wt |W t−1,Y t−1,X t , {YT ,XT}) = f (Wt |W t−1,Y t−1,X t)

 the generalization of the non-anticipating assumption for
time-series experiments (Bojinov and Shephard, 2019)

2 Overlap: there exists a constant δW > 0 such that

f (Wt = w |W t−1,Y t−1,X t)︸ ︷︷ ︸
propensity score

> δW · fh(w)︸ ︷︷ ︸
density of Fh

for all w ∈ W

 the ratio fh(w)/f (Wt = w |W t−1,Y t−1,X t) is bounded
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The Proposed Estimator

Inverse probability of treatment weighting (IPW)
Kernel smoothing of spatial point patterns
Estimated outcome surface at ω ∈ Ω

Ŷt(Fh;ω) =

counterfactual distribution︷ ︸︸ ︷
fh(Wt)

f̂ (Wt |W t−1,Y t−1,X t)︸ ︷︷ ︸
actual distribution

∑
s∈SYt

Kb(‖ω − s‖)

︸ ︷︷ ︸
spatially smoothed outcome

where Kb is the scaled Kernel function with bandwidth parameter b
Estimated number of outcome-active locations in region B

N̂Bt(Fh) =

∫
B
Ŷt(Fh;ω)dω

Averaging over time

N̂B(Fh) =
1
T

T∑
t=1

N̂Bt(Fh)
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Estimation for Intervention over Multiple Time Periods M

Estimated outcome surface at ω ∈ Ω

Ŷt(Fh;ω) =
t∏

j=t−M+1

fht−j+1(Wj)

f̂ (Wj |W j−1,Y j−1,X j)︸ ︷︷ ︸
product of M ratios

∑
s∈SYt

Kb(‖ω − s‖)

where Kb is the scaled Kernel function with bandwidth parameter b
Estimated number of outcome-active locations in region B

N̂Bt(Fh) =

∫
B
Ŷt(Fh;ω)dω

Averaging over time

N̂B(Fh) =
1

T −M + 1

T∑
t=M

N̂Bt(Fh)
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Asymptotic Normality and Variance Estimation

Suppose that there exists v such that

1
T −M + 1

T∑
t=M

vt
p−→ v as T −→∞

where vt = V
(
N̂Bt(Fh) |W t−M ,YT ,XT

)
.

Then, under some regularity conditions, we have,

√
T
(
N̂B(Fh)− NB(Fh)

)
d−→ N (0, v)

where the proof is based on the martingale theory

Time-specific variance vt cannot be estimated

We use the upper bound vt ≤ E
(
N̂Bt(Fh)2 |W t−M ,YT ,XT

)
Estimated propensity score  smaller variance
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Simulation Studies: Setup

Times series of length T = 200, 400, 500 on unit square Ω = [0, 1]2

Two time-invariant confounders X 1(ω),X 2(ω):
1 draw hypothetical road networks using lines and arcs
2 confounder as exponential decay of distance to the closest line (arc)

Two time-varying confounders X 3(ω),X 4(ω):
1 draw points from non-homogeneous Poisson process based on X 1(ω)
2 confounder as exponential decay of distance to the closest point
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Treatment assignment: non-homogeneous Poisson point process

λWt (ω) = exp{α0 + α>XXt(ω) + αWW ∗
t−1(ω) + αYY

∗
t−1(ω)}

where W ∗
t−1(ω) = exp{−2DW (ω)} and Y ∗t−1(ω) = exp{−2DY (ω)}

with DW and DY being the distance from ω to the closest treatment
and outcome active locations at t − 1

Outcome: non-homogeneous Poisson point process

λYt (ω) = exp{γ0 + γ>XXt(ω) + γWW ∗
(t−3):t(ω) + γYY

∗
t−1(ω)}

where W ∗
(t−3):t(ω) = exp{−2D∗W (ω)} with D∗w being the distance

from ω to the closest treatment active locations from time t − 3 to t

Stochastic interventions: homogeneous Poisson point process
1 Fh = FM

h with intensity h = 3, . . . , 7 with M = 1, 3, 7, 30
2 Fh = Fh1 × Fh2 × Fh3 where h3 = 3, . . . , 7 and h1 = h2 = 5
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Simulation Results
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Estimation improves as T increases and worsens as h increases
Hájek adjustment substantially improves the performance
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Coverage of Hájek Estimator’s 95% Confidence Intervals
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Performance improves as T increases and worsens as M increases
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Empirical Analysis: Setup

Estimate the baseline treatment distribution φ0(ω) based on the
airstrikes data from January to September, 2006Spatial distribution of kinetic airstrikes

January to September 2006 February 2007 to July 2008

0
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1 How does increasing airstrikes affect insurgent violence?
 vary c > 0 for h(ω) = c · φ0(ω)

2 How long does it take for these effects to be realized?
 vary c for hM(ω) = c · φ0(ω) and h1(ω) = · · · = hM−1(ω) = φ0(ω)

3 How does the shift in the prioritization of certain locations for
airstrikes change the spatial pattern of insurgent attacks?
 vary α > 0 for hα(ω) = cα · φ0(ω)dα(ω) with

∫
Ω hα(ω)dω = c

power density dα(ω) ∝ d(ω)α

d(ω) = the normal density centered at sf with precision α
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Propensity Score Model Specification

Non-homogeneous Poisson point process
prior airstrikes over the last day, week, and month

W
∗
t−1(ω) =

7∑
j=1

∑
s∈SWt−j

exp{−‖s − ω‖}

prior insurgent attacks over the last day, week, and month
prior show-of-force over the last day, week, and month
amount of US aid in each district over the past month
distances from major cities, road networks, rivers, and settlements
log population of governorate (measured in 2003), temporal splines
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Increasing the Expected Number of Airstrikes from 1 to 6
per Day Leads to More Insurgent Attacks

M =  1

0.05 attacks

M =  3

2.92 attacks

M =  7

10.8 attacks

M =  30

7.53 attacks

Improvised Explosive Devices

(a) Improvised Explosive Device (IED)

M =  1

−1.41 attacks

M =  3

5.23 attacks

M =  7

15.68 attacks

M =  30

10.37 attacks

Small Arms Fire

(b) Small Armed Fire (SAF)
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Effect of Increasing the Airstrikes for M Days on the
Number of Insurgent Attacks within Baghdad
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Effect of Increasing the Airstrikes M Days Ago on the
Number of Insurgent Attacks within Baghdad
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Increasing the Priority of Baghdad as a Focal Point of
Airstrikes Shifts Attacks to Mosul when M is Large

M =  1

1.71 attacks

M =  3

−1 attacks

M =  7

−3.65 attacks

M =  30

−3.18 attacks

Improvised Explosive Devices

(a) Improvised Explosive Device (IED)

M =  1

1.05 attacks

M =  3

−1.21 attacks

M =  7

−5.57 attacks

M =  30

2.43 attacks

Small Arms Fire

(b) Small Armed Fire (SAF)
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Concluding Remarks

A new approach to causal inference with spatio-temporal data
directly model point patterns without arbitrary aggregation
allow for unstructured spillover and carryover effects

Key idea: stochastic intervention
consider treatment distributions rather than fixed treatment values
can handle infinitely many possible treatment locations
combine this with spatial smoothing for outcome point process

Effects of airstrikes on insurgent attacks in Iraq
airstrike strategies as stochastic interventions
flexible estimation of spillover and carryover effects

Future research:
causal inference with unstructured data such as texts
civilian casualty as mediator; comparison with hearts and minds

Paper at https://imai.fas.harvard.edu/research/spatiotempo.html
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