Automated Coding of Political Campaign Advertisement Videos: An Empirical Validation Study

June Hwang[†] Kosuke Imai[†] Alex Tarr[‡]

[†]Harvard University [‡]Princeton University

Applied Statistics Workshop

Harvard University

April 3, 2019

Motivation

- Modern political campaigns rely on various kinds of advertisements
- In 2018, TV ads were the most popular medium \rightsquigarrow \$8.5 billion
- Questions:
 - I How do campaigns choose the contents of ads?
 - ② How do the contents of ads affect the behavior and opinion of voters?
- Main data source on TV ads: Wesleyan Media Project (WMP)
 - successor to the Wisconsin Advertisement Project (WAP)
 - all federal and gubernatorial elections from 1998 to 2016
 - videos obtained from the Campaign Media Analysis Group (CMAG)
 - a group of research assistants code over 100 variables:
 - CMAG: broadcast time and frequency, media market, TV show, etc.
 WMP: issue mentions, opponent appearance, negativity, etc.
- Data not publicly available until the next election

Overview of the Project

- Goals:
 - 4 Automate the coding of campaign advertisement videos
 - ② Compare the results of automated coding with those of human coding
- Workflow:
 - $\textcircled{0} Data acquisition \rightsquigarrow audio matching$
 - Peature construction
 - visual features: video summarization, image text detection, face detection
 - audio features: speech transcription, text features, music features
 - Empirical validation
 - issue mention, opponent mention, face recognition
 - music mood classification, negative advertisement
- Findings:
 - Machine coding is at least as accurate as human coding
 - In some cases, machine coding is too accurate
 - Music mood and negativity classifications have a room for improvement

Data Acquisition from YouTube

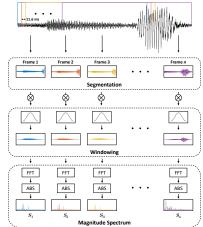
- High resolution videos from candidates' official YouTube channels
- Filter by length (15, 30, and 60 seconds ± 5 seconds)

Election		All	Cand	lidates with	
cycle	Office	candidates	YouTı	ube channels	All videos
	President	2	2	(100%)	400
2012	House	317	263	(83.0%)	1225
2012	Senate	64	50	(78.1%)	683
	Governor	25	20	(80.0%)	194
	House	255	199	(78.0%)	1047
2014	Senate	68	52	(76.5%)	997
	Governor	86	59	(68.6%)	888
	Total	817	645	(79.0%)	5434

Matching YouTube Videos with CMAG Videos

- Direct comparison of automated coding with the WMP coding requires matching of YouTube videos with CMAG videos
- Audio matching based on spectrogram (Haitsma and Kalker 2002)
 - split audio signal into 31/32 overlapping segments
 → 11.6ms per segment
 - windowing to reduce noise due to segmentation
 - **③** Fast Fourier transform (FFT)
 - Absolute value transform (ABS)
- Dimension reduction via energy values
 \$\sigma\$ spectral fingerprint
- Matching on sub-fingerprint
- Evaluation: a random sample of 50 matches and 50 non-matches

Hwang, Imai, and Tarr (Harvard/Princeton)



The Validation Data Set

		All Ca	ndidates	Repu	blicans	Democrats	
Election		CMAG	Matches	CMAG	Matches	CMAG	Matches
cycle	Office	videos	found	videos	found	videos	found
	President	228	80.7%	98	71.4%	130	87.7%
2012	House	1106	54.7	574	49.7	506	63.0
	Senate	586	55.0	279	45.5	289	65.1
	Governor	184	54.4	94	48.9	90	60.0
2014	House	912	57.7%	437	57.7%	470	58.3%
	Senate	666	71.3	327	70.3	307	76.5
	Governor	742	51.6	383	49.1	317	59.3
	Total	4424	58.7%	2192	54.7%	2109	65.1%

better coverage for presidential candidates, Democrats, 2014 elections
 regression analysis → incumbency (channel), partisanship (videos)

Video Summarization

- Video data = a sequence of *frames*
- YouTube data have 24 or 30 frames with 1280 × 720 pixels per second
 → a total of 720 1,800 frames (or several gigabytes) per video
- Need to select a small number of representative frames
- Video summarization algorithm (Chakraborty et al. 2015)

$$S^* = \underset{S \subseteq V}{\operatorname{argmax}} \underbrace{\sum_{i \in V} \max_{j \in S} w_{ij}}_{\text{representativeness}} + \lambda_1 \underbrace{\sum_{i \in S} \min_{j \in S} d_{ij}}_{\text{uniqueness}} + \lambda_2 \underbrace{(N - N_S)}_{\# \text{ of unselected}}_{\text{frames}},$$

- V: frames of original video data
- S: set of selected frames
- w_{ij}: cosine similarity of histogram of oriented gradients (HOG)
- d_{ij} : χ^2 distance based on the Lab histogram
- Approximate optimization algorithm

Ad for Mitch McConnell (Rep. Sen. KS; 2014)

8/30

auto-generated summary



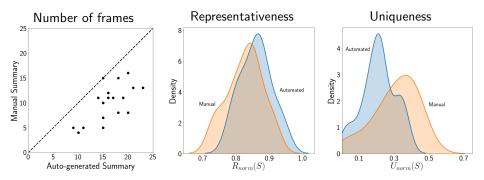
Hwang, Imai, and Tarr (Harvard/Princeton)

331 GRIMES

> NICOL NOOR CONSIGNING IN Automated Coding of Campaign Ads

Harvard (April 3, 2019) 9/30

Auto-generated vs Manually-generated Summaries



• More frames for auto-generated summaries ~> more representative but less unique

Image Text Detection

• Google Cloud Platform (GCP) Vision API

(a) Newspaper

(b) Background image

(c) Endorsement

(f) Policy position

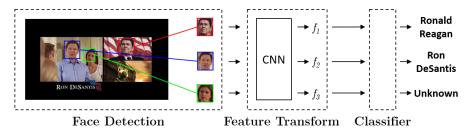
(d) Approval message (e) Voting records
(a), (b), (c) → perfect detection
(d), (e), (f) → missing a few words

Hwang, Imai, and Tarr (Harvard/Princeton)

Automated Coding of Campaign Ads

Harvard (April 3, 2019) 11 / 30

Face Detection



• Multi-task cascade neural networks (MTCNN; Python package facenet) with the loss function (Zhang *et al.* 2016):

$$\sum_{i=1}^{N} - \left\{ d_i \log \hat{d}_i + (1-d_i)(1-\log \hat{d}_i)
ight\} + rac{\mathbf{1}\{d_i=1\}}{2} \left(\|b_i - \hat{b}_i\|^2 + \|l_i - \hat{l}_i\|^2
ight)$$

- d_i: binary variable indicating the presence of face
- b_i: bounding box for face
- Ii: facial landmark locations
- "hat" represents predicted value from the MTCNN
- WIDER FACE and CelebA data sets as training data

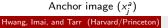
Automated Coding of Campaign Ads

Facial Features

- FaceNet algorithm (Schroff et al. 2015)
 - convolutional neural nets
 - uses Google's Inception ResNet V1 architecture
 - trained on the VGGFace2 data set (several million face images)
- Triplet loss function to learn about embedding $f(x_i) \in \mathbb{R}^{128}$:

$$\sum_{j=1}^{N_{\text{trip}}} \max\left(0, ||f(x_j^a) - f(x_j^p)||^2 - ||f(x_j^a) - f(x_j^n)||^2 + \alpha\right)$$

- x_j^a : anchor image
- x_i^p : positive image, i.e., the same person as x_i^a
- x_i^n : negative image, i.e., different person
- Hard-to-classify triplets:



Positive image (x_i^p) Automated Coding of Campaign Ads

Negative image (x_i^n) Harvard (April 3, 2019) 13/30

Speech Transcription

- Google Cloud Platform Video Intelligence API
 - Recurrent neural network called Long short-term memory (LSTM)
 - Known to be accurate (Prabhavalkar et al. 2017)
 - Political science validation (Proksh et al. 2019)

• Works well for ads too:

"...it's about getting new jobs getting good jobs given middle class people the chance to get her kids a decent life nobody can tell me it's not a senator's job to create jobs and I choose Allison because she will work with people in both parties to do what's right for you since Alison to the Senate"

Auto transcription

"...it's about getting new jobs getting good jobs giving middle class people the chance to give their kids a decent life nobody can tell me it's not a senator's job to create jobs and I choose Alison because she will work with people in both parties to do what's right for you send Alison to the Senate"

Manual transcription

• A small number of mistakes: songs, kids' voice, etc.

Ad for Joe Dorman (Dem. Gov. OK; 2014)

• Transcript:

I'm not fir gun control yes I'm f***ing control but I'm becoming car no I'm not common what did I say before I don't know anymore nobody's keeping score

• Image text:

I'M NOT FOR GUN CONTROL YES, I'M FOR GUN CONTROL MMON ORE BUT I'M OR COMMON CORE NO, I'M NOT FOR COMMON CORE WHAT DID I SAY BEFORE? I DON'T KNOW, ANYMORE I DON'T KNOW ANYMORE HOPE NOBODY'S KEEPING SCORE CONSISTENCY IS SUCH A BORE FLIP-FLOP FALLIN PAID FOR BY JOE DORMAN FOR GOVERNOR

Ad for Nan Hayworth (Rep. House. NY18; 2014)

• Transcript:

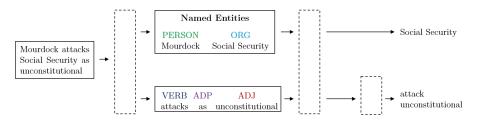
sean malone is a phony baloney baloney baloney is full of baloney that's right shaun maloney is a phony baloney baloney making big promises but then voting to cut medicare and veterans pensions a phony baloney pony big big phony and while we struggle maloney voted for amnesty for illegals amnesty amnesty really and first class airfare for congress said is right definitely shaun maloney is full of baloney baloney baloney head in washington i'm nan hayworth and i approved this message

Image text:

SEAN Maloney Phoi ECI THF US FOUND TO BE UNTRUTHFUL one SEAN Maloney CUT Medicare CUT Medicare CUT Veteran's Pensions SERN Malonev Amnesty for Illegals E Maloney FREE First Class Airfare 672 NAN CONGRESS PAID FOR BY FRIENDS OF NAN HAYWORTH.APPROVED BY NAN HAYWORTH DOCTOR. MOTHER. NEIGHBOR

Text Features

- Keyword based approach \rightsquigarrow issue and opponent mentions
- Machine learning for sentiment analysis ~→ negativity
- Pre-processing transcripts (Python package spacy):
 - part-of-speech tagging and named entity recognition using LSTM (Dozat and Manning 2016)
 - lemmatization rather than stemming
 - "caring" \rightsquigarrow "care" instead of "car"
 - recognizes "mice" as a plural of "mouse"

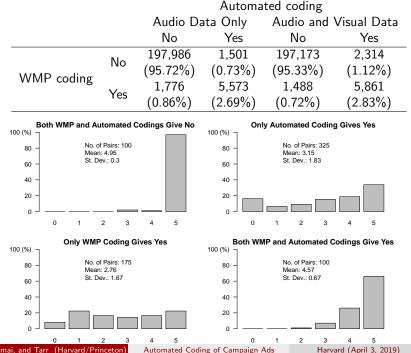


Music Features

- Music is important for tone of an advertisement
- WMP's variable for music mood:
 - ominous and tense
 - 2 uplifting
 - sad and sorrowful
- Use of spectrogram as done for audio matching (Ren et al. 2015)
- We do not separate music and speech but compute features that are known to characterize types of music well
- 412 short-term features:
 - Statistical spectrum descriptor (SSD): shapes of spectrogram
 - 2 Mel-frequency cepstral coefficients (MFCC): energies
 - Solution Octave spectral contrast (OSC): differences in the peaks and valleys
 - Spectral flatness measure and spectral crest measure (SFM/SCM)
- 224 long-term features:
 - Modulation feature spectrogram: rhythm, tempo, and beat
 - 2 Joint-frequency feature: temporal evolution of modulation features

Issue Mention

- Whether an ad mentions or pictures certain political issues or actors
- A key set of variables in the WAP/WMP data sets
 - 10 actors: Obama, Pelosi, McConnell, Democrats, Republicans, ...
 - 2 12 politically-charged words: tea party, wall street, big government, ...
 - 61 issues: tax, jobs/employment, gun control, drugs, ...
- keyword based search
 - 44 issues: we use the WMP issue names and last names of actors
 - 16 issues: we add synonyms and words with the same roots (e.g., "Chinese" for the "China" issue, "farm" for the "farming" issue)
 - 21 issues: we add relevant words (e.g., "climate change" for "global warming", "NRA" for the "gun control" issue)
- No stemming and no lemmatization



Hwang, Imai, and Tarr (Harvard/Princeton)

Automated Coding of Campaign Ads

22 / 30

Examples of Mistakes by Automated Coding

Ad for Mark Warner (Dem. Sen. VA; 2014)

- Reading the entire excerpt from the newspaper
- Incorrectly choosing the "tax" issue

Jeff Merkley (Dem. Sen. OR; 2014)

 Detected the word "budget" from the name of the organization quoted as the source

Opponent Mention

- The WMP excludes the oral approval: "Excluding the *oral approval*, is the opposing candidate mentioned by name in the ad?"
- We use last name (Roe), possessive (Roe's), and possessive without an apostrophe (Roes)
- Results:

		Automated coding				
		Audio D	ata Only	Audio and	Visual Data	
		No	Yes	No	Yes	
	No	1,273	64	1,260	77	
W/MD and in a	NO	(51.43%)	(2.59%)	(50.91%)	(3.11%)	
WMP coding	Yes	127	1,011	28	1,110	
		(5.13%)	(40.85%)	(1.13%)	(44.85%)	

- 77 "false positives": 3 mistakes by automated coding (detecting texts in background image)
- 28 "false negatives": 18 mistakes by automated coding (mistakes in transcription or image text detection)

Face Recognition

- We combine two WMP variables:
 - "Excluding the oral approval, is the favored candidate / opposing candidate pictured in the ad?"
 - Ones the candidate physically appear on screen and speak to the audience during oral approval?"
- This is supposed to exclude the case where the candidate appears but does not speak \rightsquigarrow we do not make this distinction
- 75 Senate candidates from 2012 and 2014 elections
- Scraped images from Wikipedia and other pages on the Internet

		Automated coding					
		Favored	candidate	Opposing candidate			
		No	Yes	No	Yes		
	No	58	109	490	12		
WMP coding	NO	(7.56%)	(14.21%)	(63.89%)	(1.56%)		
wivir coulling	Yes	57	543	65	200		
		(7.43%)	(70.80%)	(8.47%)	(26.08%)		

166 disagreements for the favored candidate

- 94 cases: detected in the oral approval segments
- 48 cases: angled, occluded, and dimly-lit images
- 24 cases: mislabels by the WMP coders
- 2 77 disagreements for the opposing candidate
 - 51 cases: angled, occluded, and dimly-lit images
 - 26 cases: mislabels by the WMP coders

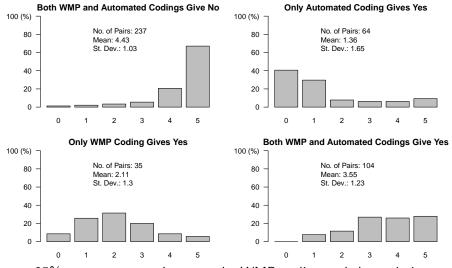
Music Mood Classification

- Original WMP question: "If music is played during the ad, how would it be best described?"
- Out of 2,276 videos,
 - "uplifting" 70%, "ominous/tense" 32%, "sad/sorrowful" (14%)
 - 15% have more than one category
- SVM classifier with radial basis and 5-fold cross validation

		Automated coding							
		Ominou	s/Tense	Upli	fting	Sad/Sorrowful			
		No	Yes	No	Yes	No	Yes		
WMP	No	237	64	66	65	334	45		
		(53.86%)	(14.55%)	(15.00%)	(14.77%)	(75.91%)	(10.23%)		
	Yes	35	104	31	278	31	30		
		(7.95%)	(23.64%)	(7.05%)	(63.18%)	(7.05%)	(6.82%)		

- WMP intercoder (2 coders) agreement rate: 84 92%
- state-of-the-art machine learning methods \rightsquigarrow 70% accuracy

MTurk Study for the "Ominous/tense" Question



 85% agreement rate between the WMP coding and the majority opinion of MTurkers

Negativity

- CMAG variable: "positive," "negative," and "contrast"
- WMP's original question: "In your judgment, is the primary purpose of the ad to promote a specific candidate, attack a candidate, or contrast the candidates?" — "contrast", "negative", and "attack"
- We focus on "positive" vs. "negative" from the CMAG
- Liner SVM with 3-fold cross validation

		Automated coding					
		Text Only		Music	: Only	Text and Music	
	Negative Positive		Positive	Negative	Positive	Negative	Positive
WMP	Negative	291	34	255	70	290	35
		(56.18%)	(6.56%)	(49.23%)	(13.51%)	(55.98%)	(6.76%)
	Positive	43	150	63	130	39	154
		(8.30%)	(28.96%)	(12.16%)	(25.10%)	(7.53%)	(29.73%)

• Need to tune music features for dark music

Concluding Remarks

- Many variables form the WAP and WMP can be automatically coded
 - Often, machine coding is as accurate as human coding
 - Music mood and negativity classifications have a room for improvement
- We can improve the efficiency and scope of research on political advertising (TV, radio, and online)
- Video data = audio data + image data + text data
- WAP and WMP serve as excellent validation data sets
- Contribute to the fast growing political science literature on analyses of audio, image, and transcript data (e.g., Dietrich, 2018; Dietrich *et al.* 2018; Knox and Lucas, 2018; Proksch *et al.* 2019; Torres, 2018)
- Our code will be made available

Send comments and suggestions to Imai@Harvard.Edu