Using a Probabilistic Model to Assist Merging of Large-scale Administrative Records

Ted Enamorado Benjamin Fifield Kosuke Imai

Princeton

Harvard

Talk at the Tech Science Seminar

IQSS, Harvard University

October 30, 2018

Motivation

- In any given project, social scientists often rely on multiple data sets
- Cutting-edge empirical research often merges large-scale administrative records with other types of data
- We can easily merge data sets if there is a common unique identifier
 → e.g. Use the merge function in R or Stata
- How should we merge data sets if no unique identifier exists? ~> must use variables: names, birthdays, addresses, etc.
- Variables often have measurement error and missing values ~> cannot use exact matching
- What if we have millions of records?
 → cannot merge "by hand"
- Merging data sets is an uncertain process

 ¬¬¬ quantify uncertainty and error rates
- Solution: Probabilistic Model

Data Merging Can be Consequential

- Turnout validation for the American National Election Survey
- 2012 Election: self-reported turnout (78%) \gg actual turnout (59%)
- Ansolabehere and Hersh (2012, *Political Analysis*):
 "electronic validation of survey responses with commercial records provides a far more accurate picture of the American electorate than survey responses alone."
- Berent, Krosnick, and Lupia (2016, *Public Opinion Quarterly*): "Matching errors ... drive down "validated" turnout estimates. As a result, ... the apparent accuracy [of validated turnout estimates] is likely an illusion."
- Challenge: Find 2500 survey respondents in 160 million registered voters (less than 0.001%) → finding needles in a haystack
- Problem: match \neq registered voter, non-match \neq non-voter

Probabilistic Model of Record Linkage

- Many social scientists use deterministic methods:
 - match "similar" observations (e.g., Ansolabehere and Hersh, 2016; Berent, Krosnick, and Lupia, 2016)
 - proprietary methods (e.g., Catalist)
- Problems:
 - Inot robust to measurement error and missing data
 - 2 no principled way of deciding how similar is similar enough
 - Iack of transparency
- Probabilistic model of record linkage:
 - originally proposed by Fellegi and Sunter (1969, JASA)
 - enables the control of error rates
- Problems:
 - current implementations do not scale
 - e missing data treated in ad-hoc ways
 - Idoes not incorporate auxiliary information

The Fellegi-Sunter Model

- Two data sets: \mathcal{A} and \mathcal{B} with $N_{\mathcal{A}}$ and $N_{\mathcal{B}}$ observations
- K variables in common
- We need to compare all $N_{\mathcal{A}} imes N_{\mathcal{B}}$ pairs
- Agreement vector for a pair (i,j): $\gamma(i,j)$

$$\gamma_k(i,j) = egin{cases} 0 & ext{different} \ 1 & \ dots & ext{similar} \ L_k-2 & \ L_k-1 & ext{identical} \end{cases}$$

Latent variable:

$$M_{i,j} = \left\{ egin{array}{cc} 0 & {
m non-match} \ 1 & {
m match} \end{array}
ight.$$

• Missingness indicator: $\delta_k(i,j) = 1$ if $\gamma_k(i,j)$ is missing

How to Construct Agreement Patterns

• Jaro-Winkler distance with default thresholds for string variables

		Name			Address		
	First	Middle	Last	House	Street		
Data set ${\cal A}$							
1	James	V	Smith	780	Devereux St.		
2	John	NA	Martin	780	Devereux St.		
Data set ${\cal B}$							
1	Michael	F	Martinez	4	16th St.		
2	James	NA	Smith	780	Dvereuux St.		
Agreement patterns							
$\mathcal{A}.1-\mathcal{B}.1$	0	0	0	0	0		
$\mathcal{A}.1-\mathcal{B}.2$	2	NA	2	2	1		
$\mathcal{A}.2-\mathcal{B}.1$	0	NA	1	0	0		
$\mathcal{A}.2 - \mathcal{B}.2$	0	NA	0	2	1		

- Independence assumptions for computational efficiency:
 - Independence across pairs
 - 2 Independence across variables: $\gamma_k(i,j) \perp \perp \gamma_{k'}(i,j) \mid M_{ij}$
 - Solution Missing at random: $\delta_k(i,j) \perp \gamma_k(i,j) \mid M_{ij}$
- Nonparametric mixture model:

$$\prod_{i=1}^{N_{\mathcal{A}}} \prod_{j=1}^{N_{\mathcal{B}}} \left\{ \sum_{m=0}^{1} \lambda^{m} (1-\lambda)^{1-m} \prod_{k=1}^{K} \left(\prod_{\ell=0}^{L_{k}-1} \pi_{km\ell}^{1\{\gamma_{k}(i,j)=\ell\}} \right)^{1-\delta_{k}(i,j)} \right\}$$

where $\lambda = P(M_{ij} = 1)$ is the proportion of true matches and $\pi_{km\ell} = \Pr(\gamma_k(i, j) = \ell \mid M_{ij} = m)$

- Fast implementation of the EM algorithm (R package fastLink)
- EM algorithm produces the posterior matching probability ξ_{ij}
- Deduping to enforce one-to-one matching
 - Choose the pairs with $\xi_{ij} > c$ for a threshold c
 - ② Use Jaro's linear sum assignment algorithm to choose the best matches

Controlling Error Rates

False negative rate (FNR):

 $\frac{\# \text{true matches not found}}{\# \text{ true matches in the data}}$

$$\frac{P(\textit{M}_{ij}=1 \mid \textsf{unmatched}) P(\textsf{unmatched})}{P(\textit{M}_{ij}=1)}$$

False discovery rate (FDR):

$$rac{\#}{\#}$$
 false matches found $= P(M_{ij} = 0 \mid matched)$

• We can compute FDR and FNR for any given posterior matching probability threshold *c*

Enamorado, Fifield, and Imai (PU/HU)

Computational Improvements via Hashing

- Sufficient statistics for the EM algorithm: number of pairs with each *observed* agreement pattern
- **H**_k maps each pair of records (keys) in linkage field k to a corresponding agreement pattern (hash value):

$$\mathbf{H} = \sum_{k=1}^{K} \mathbf{H}_{k} \text{ where } \mathbf{H}_{k} = \begin{bmatrix} h_{k}^{(1,1)} & h_{k}^{(1,2)} & \dots & h_{k}^{(1,N_{2})} \\ \vdots & \vdots & \ddots & \vdots \\ h_{k}^{(N_{1},1)} & h_{k}^{(N_{1},2)} & \dots & h_{k}^{(N_{1},N_{2})} \end{bmatrix}$$

and
$$h_k^{(i,j)} = \mathbf{1} \{ \gamma_k(i,j) > 0 \} 2^{\gamma_k(i,j) + (k-1) \times L_k}$$

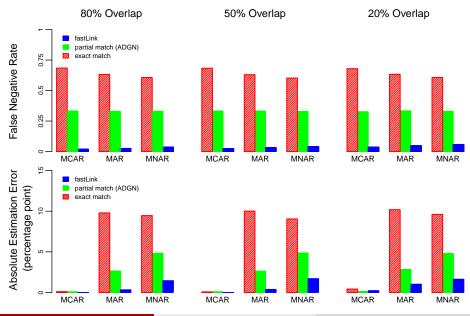
- H_k is a sparse matrix, and so is H
- With sparse matrix, lookup time is O(T) where T is the number of unique patterns observed T ≪ ∏^K_{k=1} L_k

Simulation Studies

- 2006 voter files from California (female only; 8 million records)
- Validation data: records with no missing data (340k records)
- Linkage fields: first name, middle name, last name, date of birth, address (house number and street name), and zip code
- 2 scenarios:
 - Unequal size: 1:100, 10:100, and 50:100, larger data 100k records
 - 2 Equal size (100k records each): 20%, 50%, and 80% matched
- 3 missing data mechanisms:
 - Missing completely at random (MCAR)
 - 2 Missing at random (MAR)
 - Missing not at random (MNAR)
- 3 levels of missingness: 5%, 10%, 15%
- Noise is added to first name, last name, and address
- Results below are with 10% missingness and no noise

Merging Large Data Sets

Error Rates and Estimation Error for Turnout



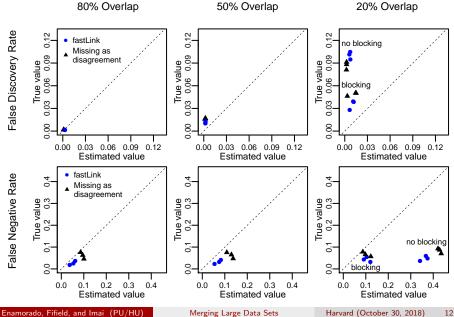
Enamorado, Fifield, and Imai (PU/HU)

Merging Large Data Sets

Harvard (October 30, 2018)

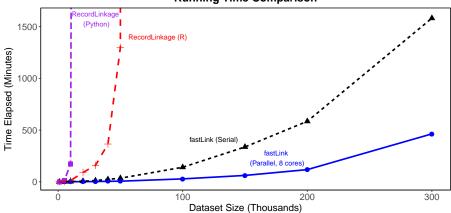
11 / 24

Accuracy of Estimated Error Rates



12/24

Runtime Comparisons



Running Time Comparison

• No blocking, single core (parallelization possible with fastLink)

Application **1**: Merging Survey with Administrative Record

- Hill and Huber (2017, *Political Behavior*) study differences between donors and non-donors among CCES (2012) respondents
- CCES respondents are matched with DIME donors (2010, 2012)
- Use of a proprietary method, treating non-matches as non-donors
- Donation amount coarsened and small noise added
- 4,432 (8.1%) matched out of 54,535 CCES respondents
- We asked YouGov to apply **fastLink** for merging the two data sets
- We signed the NDA form \rightsquigarrow no coarsening, no noise

Merging Process

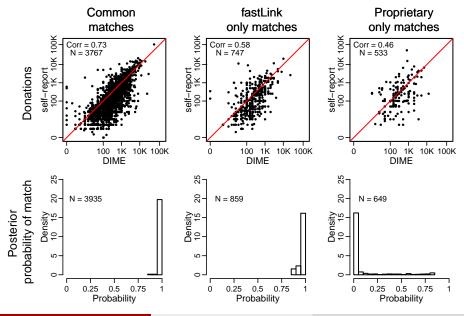
- DIME: 5 million unique contributors
- CCES: 51,184 respondents (YouGov panel only)
- Exact matching: 0.33% match rate
- Blocking: 102 blocks using state and gender
- Linkage fields: first name, middle name, last name, address (house number, street name), zip code
- Took 1 hour using a dual-core laptop
- Examples from the output of one block:

Name						
First	Middle	Last	Street	House	Zip	Posterior
agree	agree	agree	agree	agree	agree	1.00
similar	NA	Agree	similar	agree	agree	0.93
agree	NA	Agree	disagree	disagree	NA	0.01

Merge Results

		Т	hresho		
		0.75	0.85	0.95	Proprietary
	All	4945	4794	4573	4534
Number of matches	Female	2198	2156	2067	2210
	Male	2747	2638	2506	2324
Overlap fastLink	All	3958	3935	3880	
and proprietary	Female	1878	1867	1845	
method	Male	2080	2068	2035	
False discovery rate	All	1.24	0.65	0.21	
(FDR; %)	Female	0.91	0.52	0.14	
(FDR, /0)	Male	1.49	0.75	0.27	
Falco pogativo rato	All	15.25	17.35	20.81	
False negative rate (FNR; %)	Female	5.34	6.79	10.29	
(1 INIX, 70)	Male	21.84	24.37	27.81	

Correlations with Self-reports and Matching Probabilities



Enamorado, Fifield, and Imai (PU/HU)

Merging Large Data Sets

Harvard (October 30, 2018) 17 / 24

Post-merge Analysis

Merged variable as the outcome

- Assumption: No omitted variable for merge $Z_i^* \perp \mathbf{X}_i \mid (\delta, \gamma)$
- Posterior mean of merged variable: $\zeta_i = \sum_{i=1}^{N_B} \xi_{ij} Z_i / \sum_{i=1}^{N_B} \xi_{ij}$
- Regression:

$$\mathbb{E}(Z_i^* \mid \mathbf{X}) = \mathbb{E}\{\mathbb{E}(Z_i^* \mid \boldsymbol{\gamma}, \boldsymbol{\delta}, \mathbf{X}_i) \mid \mathbf{X}_i\} = \mathbb{E}(\zeta_i \mid \mathbf{X}_i)$$

- Ø Merged variable as a predictor
 - Linear regression:

$$Y_i = \alpha + \beta Z_i^* + \eta^\top \mathbf{X}_i + \epsilon_i$$

- Additional assumption: $Y_i \! \perp \! \! \perp \! (\delta, \gamma) \mid \mathsf{Z}^*, \mathsf{X}$
- Weighted regression:

$$\mathbb{E}(Y_i \mid \boldsymbol{\gamma}, \boldsymbol{\delta}, \mathbf{X}_i) = \alpha + \beta \mathbb{E}(Z_i^* \mid \boldsymbol{\gamma}, \boldsymbol{\delta}, \mathbf{X}_i) + \eta^\top \mathbf{X}_i + \mathbb{E}(\epsilon_i \mid \boldsymbol{\gamma}, \boldsymbol{\delta}, \mathbf{X}_i) \\ = \alpha + \beta \zeta_i + \eta^\top \mathbf{X}_i$$

Predicting Ideology using Contribution Status

- Hill and Huber regresses ideology score (-1 to 1) on the indicator variable for being a donor (merging indicator), turnout, and demographic variables
- We use the weighted regression approach

	Repu	ıblicans	Democrats		
	Original	fastLink	Original	fastLink	
Contributor dummy	0.080	0.046	-0.180	-0.165	
	(0.016)	(0.015)	(0.008)	(0.009)	
2012 General vote	0.095	0.094	-0.060	-0.060	
	(0.013)	(0.013)	(0.010)	(0.010)	
2012 Primary vote	0.094	0.096	-0.019	-0.024	
	(0.009)	(0.009)	(0.009)	0.008)	

Application 2: Merging National Voter Files

- We merged two national voter files (2015 and 2016) with more than 140 million voters each!
 - Almost all merging is done within each state
 - But, some people move across states!
 - \rightsquigarrow 7.5 million cross-state movers between 2014 and 2015
- IRS Statistics of Income Migration Data
 - 9.2% of residents moved to new address in same state
 - 1.6% moved to a new state
 - $\bullet\,$ Popular move: New York \longrightarrow Florida, followed by California \longrightarrow Texas
- Linkage fields: first name, middle name, last name, date/year/month of birth, gender, house number (within-state only), street name (within-state only), date of registration (within-state only)

Incorporating Auxiliary Information on Migration

- Five-step process for across-state merge:
 - Within-state estimation on random sample of each state
 - Apply to full state to find non-movers and within-state movers
 - Subset out successful matches
 - **Oreal and a set of the set of th**
 - O Apply estimates to each cross-state pair
- Use of prior distribution
 - Within-state merge:

$$P(M_{ij} = 1) \approx rac{ ext{non-movers} + ext{in-state movers}}{N_{\mathcal{A}} imes N_{\mathcal{B}}}$$

 $P(\gamma_{\text{address}}(i,j) = 0 \mid M_{ij} = 1) \approx \frac{\text{in-state movers}}{\text{in-state movers} + \text{non-movers}}$

Across-state merge:

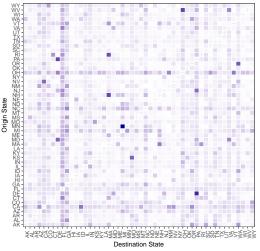
$$P(M_{ij} = 1) \approx rac{ ext{outflow from state } \mathcal{A} ext{ to state } \mathcal{B}}{N_{\mathcal{A}}^* imes N_{\mathcal{B}}^*}$$

Enamorado, Fifield, and Imai (PU/HU)

Merge Results

		:	fastLink		
		0.75	0.85	0.95	Exact
Match count	All	138.74	132.58	129.99	91.62
(millions)	Within-state	127.38	127.12	126.80	91.36
	Across-state	11.37	5.47	3.19	0.27
	All	99.32	95.62	93.93	66.24
Match rate (%)	Within-state	92.06	91.87	91.66	66.05
	Across-state	7.26	3.75	2.27	0.19
Falso discovery rate	All	1.17	0.24	0.05	
False discovery rate	Within-state	0.08	0.04	0.01	
(FDR; %)	Across-state	1.09	0.21	0.04	
Ealco pogativo rato	All	2.34	2.53	2.70	
False negative rate	Within-state	1.81	1.95	2.10	
(FNR; %)	Across-state	0.53	0.58	0.60	

Movers Found



Match Rates for Cross-State Movers

Recover intra-Northeast migration (NH ↔ MA, RI → MA, DE → PA)
 Recover out-migration to Florida (from CT, NJ, VA, NH, RI)

Enamorado, Fifield, and Imai (PU/HU)

Merging Large Data Sets

Concluding Remarks

- Merging data sets is critical part of social science research
 - merging can be difficult when no unique identifier exists
 - large data sets make merging even more challenging
 - yet merging can be consequential
- Merging should be part of replication archive
- We offer a fast, principled, and scalable merging method that can incorporate auxiliary information
- Open-source software fastLink available at CRAN
- Used for validating self-reporeted turnout in ANES
- Ongoing research:
 - merging multiple administrative records over time
 - privacy-preserving record linkage