Identification and Inference in Causal Mediation Analysis

Kosuke Imai
Luke Keele
Teppei Yamamoto

Princeton University Ohio State University
November 12, 2008

Causal Mediation Analysis

- Investigation of causal mechanisms via intermediate variables
- How does the treatment alter the outcome?
- Direct and indirect effects

- Popular among epidemiologists, psychologists, political scientists
- Fast growing methodological literature

Overview

(1) Identification under sequential ignorability

- Nonparametric identification without an additional assumption
- Parametric identification under the linear structural equation model
(2) Estimation and inference under sequential ignorability
- Parametric estimation
- Nonparametric estimator and its asymptotic variance
(3) Sensitivity analysis for the sequential ignorability assumption
- Nonparametric sensitivity analysis
- Parametric sensitivity analysis
(9) Empirical illustration
- A randomized experiment from political psychology
- The treatment is randomized but the mediator is not

Definition of Causal Mediation Effects

- Binary treatment: $T_{i} \in\{0,1\}$
- Mediator: $M_{i} \in \mathcal{M}$
- Outcome: $Y_{i} \in \mathcal{Y}$
- Observed covariates: $X_{i} \in \mathcal{X}$
- Potential mediators: $M_{i}(t)$ where $M_{i}=M_{i}\left(T_{i}\right)$
- Potential outcomes: $Y_{i}(t, m)$ where $Y_{i}=Y_{i}\left(T_{i}, M_{i}\left(T_{i}\right)\right)$
- Total causal effect: $\tau_{i} \equiv Y_{i}\left(1, M_{i}(1)\right)-Y_{i}\left(0, M_{i}(0)\right)$
- Causal mediation effects: $\delta_{i}(t) \equiv Y_{i}\left(t, M_{i}(1)\right)-Y_{i}\left(t, M_{i}(0)\right)$
- Natural (pure) direct effects: $\zeta_{i}(t) \equiv Y_{i}\left(1, M_{i}(t)\right)-Y_{i}\left(0, M_{i}(t)\right)$
- The relationship: $\tau_{i}=\delta_{i}(t)+\zeta_{i}(1-t)$

Interpretation of Causal Mediation Effects

- $\delta_{i}(t)$ is the indirect causal effect of the treatment on the outcome through the mediator under treatment status t
- Controlled indirect effects, $Y_{i}(1, m)-Y_{i}(0, m)$, for the mediator that can be manipulated and/or randomized
- Observational studies and experiments with non-random M
- descriptive vs. prescriptive effects
- $Y_{i}\left(t, M_{i}(t)\right)$ is observable but $Y_{i}\left(t, M_{i}(1-t)\right)$ is not
- $\delta_{i}(t)=0$ if $M_{i}(1)=M_{i}(0)$
- Quantity of interest:

$$
\bar{\delta}(t) \equiv \mathbb{E}\left(\delta_{i}(t)\right)=\mathbb{E}\left\{Y_{i}\left(t, M_{i}(1)\right)-Y_{i}\left(t, M_{i}(0)\right)\right\}
$$

Sequential Ignorability

Assumption 1 (Sequential Ignorability)

$$
\begin{gathered}
\left\{Y_{i}(t, m), M_{i}(t)\right\} \Perp T_{i} \mid X_{i} \\
Y_{i}(t, m) \Perp M_{i} \mid T_{i}, X_{i}
\end{gathered}
$$

for $t=0,1$ and all $m \in \mathcal{M}$

- The second equation can be rewritten as,

$$
Y_{i}(t, m) \Perp M_{i}\left(t^{*}\right) \mid T_{i}=t^{*}, X_{i}
$$

Nonparametric Identification

Theorem 1 (Nonparametric Identification)

Under Assumption 1, for $t=0,1$,

$$
\begin{gathered}
\bar{\delta}(t)=(-1)^{t} \int\left\{\int \mathbb{E}\left(Y_{i} \mid M_{i}, T_{i}=t, X_{i}\right) d P\left(M_{i} \mid T_{i}=1-t, X_{i}\right)\right. \\
\left.-\mathbb{E}\left(Y_{i} \mid T_{i}=t, X_{i}\right)\right\} d P\left(X_{i}\right)
\end{gathered}
$$

Proof (Discrete Mediator with No Observed Covariates):

$$
\begin{aligned}
& \bar{\zeta}\left(t^{*}\right) \\
= & \sum_{t=0}^{1} \sum_{m=0}^{J-1} \mathbb{E}\left(Y_{i}(1, m)-Y_{i}(0, m) \mid M_{i}\left(t^{*}\right)=m, T_{i}=t\right) \operatorname{Pr}\left(M_{i}\left(t^{*}\right)=m, T_{i}=t\right) \\
= & \sum_{m=0}^{J-1}\left\{\mathbb{E}\left(Y_{i}(1, m)-Y_{i}(0, m) \mid T_{i}=t^{*}\right) \operatorname{Pr}\left(M_{i}\left(t^{*}\right)=m \mid T_{i}=t^{*}\right) \operatorname{Pr}\left(T_{i}=t^{*}\right)\right. \\
& \left.+\mathbb{E}\left(Y_{i}(1, m)-Y_{i}(0, m) \mid M_{i}\left(t^{*}\right)=m, T_{i}=1-t^{*}\right) \operatorname{Pr}\left(M_{i}\left(t^{*}\right)=m, T_{i}=1-t^{*}\right)\right\} \\
= & \sum_{m=0}^{J-1} \mathbb{E}\left(Y_{i}(1, m)-Y_{i}(0, m)\right) \operatorname{Pr}\left(M_{i}=m \mid T_{i}=t^{*}\right) \operatorname{Pr}\left(T_{i}=t^{*}\right) \\
& +\mathbb{E}\left(Y_{i}\left(1, M_{i}\left(t^{*}\right)\right)-Y_{i}\left(0, M_{i}\left(t^{*}\right)\right) \mid T_{i}=1-t^{*}\right) \operatorname{Pr}\left(T_{i}=1-t^{*}\right) \\
= & \sum_{m=0}^{J-1}\left\{\mathbb{E}\left(Y_{i} \mid M_{i}=m, T_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid M_{i}=m, T_{i}=0\right)\right\} \operatorname{Pr}\left(M_{i}=m \mid T_{i}=t^{*}\right) \\
& \times \operatorname{Pr}\left(T_{i}=t^{*}\right)+\bar{\zeta}\left(t^{*}\right) \operatorname{Pr}\left(T_{i}=1-t^{*}\right) .
\end{aligned}
$$

Thus, we have $\bar{\zeta}\left(t^{*}\right)=$
$\sum_{m=0}^{J-1}\left\{\mathbb{E}\left(Y_{i} \mid M_{i}=m, T_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid M_{i}=m, T_{i}=0\right)\right\} \operatorname{Pr}\left(M_{i}=m \mid T_{i}=t^{*}\right)$.

Comparison with the Existing Identification Results

- The literature insists that an additional assumption is required
- Pearl's assumption for the identification of $\bar{\delta}\left(t^{*}\right)$:

$$
Y_{i}(t, m) \Perp M_{i}\left(t^{*}\right) \mid X_{i}
$$

in place of $Y_{i}(t, m) \Perp M_{i} \mid T_{i}, X_{i}$

- Robins' no-interaction assumption about controlled direct effects:

$$
Y_{i}(1, m)-Y_{i}(0, m)=B_{i}
$$

where B_{i} is a random variable that does not depend on m

- Sequential ignorability alone is sufficient

Linear Structural Equation Model (LSEM)

- The Model:

$$
\begin{aligned}
Y_{i} & =\alpha_{1}+\beta_{1} T_{i}+\epsilon_{1 i} \\
M_{i} & =\alpha_{2}+\beta_{2} T_{i}+\epsilon_{2 i} \\
Y_{i} & =\alpha_{3}+\beta_{3} T_{i}+\gamma M_{i}+\epsilon_{3 i}
\end{aligned}
$$

$$
\text { where } \mathbb{E}\left(\epsilon_{1 i} \mid T_{i}\right)=\mathbb{E}\left(\epsilon_{2 i} \mid T_{i}\right)=\mathbb{E}\left(\epsilon_{3 i} \mid M_{i}, T_{i}\right)=0
$$

- Baron and Kenny (1986):
(1) the association between Y_{i} and T_{i} exists
(2) the association between M_{i} and T_{i} exists
(3) the conditional association between Y_{i} and M_{i} given T_{i} exists
(4) $\beta_{2} \gamma$ as the causal mediation effect
- One equation is redundant:

$$
\begin{gathered}
Y_{i}=\left(\alpha_{3}+\alpha_{2} \gamma\right)+\left(\beta_{3}+\beta_{2} \gamma\right) T_{i}+\left(\gamma \epsilon_{2 i}+\epsilon_{3 i}\right) \\
\text { where } \gamma \mathbb{E}\left(\epsilon_{2 i} \mid T_{i}\right)+\mathbb{E}\left\{\mathbb{E}\left(\epsilon_{3 i} \mid M_{i}, T_{i}\right) \mid T_{i}\right\}=0
\end{gathered}
$$

Parametric Identification under Sequential Ignorability

Theorem 2 (Identification under LSEM)

Consider the following linear structural equation model

$$
\begin{aligned}
M_{i} & =\alpha_{2}+\beta_{2} T_{i}+\epsilon_{2 i} \\
Y_{i} & =\alpha_{3}+\beta_{3} T_{i}+\gamma M_{i}+\epsilon_{3 i} .
\end{aligned}
$$

Under Assumption 1, the average causal mediation effects are identified as $\bar{\delta}(0)=\bar{\delta}(1)=\beta_{2} \gamma$.

- Assumption 1 implies $\epsilon_{2 i} \Perp \epsilon_{3 i}$ as well as $\epsilon_{2 i} \Perp T_{i}, \epsilon_{3 i} \Perp T_{i}$, and $\epsilon_{3 i} \Perp M_{i} \mid T_{i}$.
- Contrary to the literature, sequential ignorability alone is sufficient
- β_{3} is the average natural direct effect

Identification without the No-interaction Assumption

Assumption 2 (No-interaction)
 $$
\bar{\delta}(0)=\bar{\delta}(1)
$$

- Assumption 2 is unnecessary
- The LSEM with an interaction term:

$$
\begin{aligned}
M_{i} & =\alpha_{2}+\beta_{2} T_{i}+\epsilon_{2 i} \\
Y_{i} & =\alpha_{3}+\beta_{3} T_{i}+\gamma M_{i}+\kappa T_{i} M_{i}+\epsilon_{3 i}
\end{aligned}
$$

- Under Assumption $1, \bar{\delta}(t)=\beta_{2}(\gamma+t \kappa)$ for $t=0,1$.

Parametric Estimation and Inference

- Under sequential ignorability, equation-by-equation least squares
- Asymptotic variance via the Delta method:
(1) No-interaction:

$$
\operatorname{Var}(\hat{\delta}(t)) \approx \beta_{2}^{2} \operatorname{Var}(\hat{\gamma})+\gamma^{2} \operatorname{Var}\left(\hat{\beta}_{2}\right)
$$

(2) With-interaction:

$$
\operatorname{Var}(\hat{\delta}(t)) \approx(\gamma+t \kappa)^{2} \operatorname{Var}(\hat{\beta})+\beta_{2}^{2}\{\operatorname{Var}(\hat{\gamma})+t \operatorname{Var}(\hat{\kappa})+2 t \operatorname{Cov}(\hat{\gamma}, \hat{\kappa})\}
$$

- A simple nonparametric estimator $\hat{\delta}(t)$:

$$
\begin{array}{r}
(-1)^{t}\left(\sum_{m=0}^{J-1} \frac{\sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=1-t, M_{i}=m\right\} \sum_{i=1}^{n} Y_{i} \mathbf{1}\left\{T_{i}=t, M_{i}=m\right\}}{n_{1-t} \sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=t, M_{i}=m\right\}}\right. \\
\left.-\frac{1}{n_{t}} \sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=t\right\} Y_{i}\right)
\end{array}
$$

where $n_{t}=\sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=t\right\}$.

- Estimate within each strata defined by X, and then aggregate

Theorem 3 (Asymptotic Variance)

Under Assumption 1, the asymptotic variance of the nonparametric estimator is

$$
\begin{aligned}
\operatorname{Var}(\hat{\delta}(t)) \approx & \frac{1}{n_{t}} \sum_{m=0}^{J-1} \lambda_{1-t, m}\left\{\left(\frac{\lambda_{1-t, m}}{\lambda_{t m}}-2\right) \operatorname{Var}\left(Y_{i} \mid M_{i}=m, T_{i}=t\right)\right. \\
& \left.+\frac{n_{t}\left(1-\lambda_{1-t, m}\right) \mu_{t m}^{2}}{n_{1-t}}\right\}+\frac{1}{n_{t}} \operatorname{Var}\left(Y_{i} \mid T_{i}=t\right) \\
& -\frac{2}{n_{1-t}} \sum_{m^{\prime}=m+1}^{J-1} \sum_{m=0}^{J-2} \lambda_{1-t, m} \lambda_{1-t, m^{\prime}} \mu_{t m} \mu_{t m^{\prime}}
\end{aligned}
$$

$$
\text { where } \lambda_{t m} \equiv \operatorname{Pr}\left(M_{i}=m \mid T_{i}=t\right) \text { and } \mu_{t m} \equiv \mathbb{E}\left(Y_{i} \mid M_{i}=m, T_{i}=t\right)
$$

Using Nonparametric Regressions

- Fit two nonparametric regressions:
(1) $\mu_{t m}(x) \equiv \mathbb{E}\left(Y_{i} \mid T_{i}=t, M_{i}=m, X_{i}=x\right)$
(2) $\lambda_{t m}(x) \equiv \operatorname{Pr}\left(M_{i}=m \mid T_{i}=t, X_{i}=x\right)$
- An estimator:

$$
\begin{array}{r}
(-1)^{t}\left\{\sum_{m=0}^{J-1} \frac{\sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=1-t\right\} \hat{\lambda}_{1-t, m}\left(X_{i}\right) \sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=t\right\} \hat{\mu}_{t m}\left(X_{i}\right) \hat{\lambda}_{t m}\left(X_{i}\right)}{n_{1-t} \sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=t\right\} \hat{\lambda}_{t m}\left(X_{i}\right)}\right. \\
\left.-\frac{1}{n_{t}} \sum_{i=1}^{n} \mathbf{1}\left\{T_{i}=t\right\}\left(\sum_{m=0}^{J-1} \hat{\mu}_{t m}\left(X_{i}\right) \hat{\lambda}_{t m}\left(X_{i}\right)\right)\right\} .
\end{array}
$$

- Nonparametric or parametric bootstrap for uncertainty estimates

A Simulation Study

- Binary mediator, lognormal outcome
- $Y_{i}(t, m) \Perp M_{i}\left(t^{\prime}\right) \mid T_{i}=t^{\prime}$ but $Y_{i}(t, m) \Perp M_{i}\left(t^{\prime}\right) \mid T_{i}=1-t^{\prime}$
- True values: $\bar{\delta}(0) \approx 0.67$ and $\bar{\delta}(1) \approx 3.95$

Estimator	n	Bias	RMSE	$90 \% \mathrm{Cl}$	$95 \% \mathrm{CI}$
$\hat{\delta}(0)$	50	0.013	1.05	0.77	0.83
	100	0.014	0.69	0.83	0.87
	250	0.014	0.42	0.86	0.91
	500	0.013	0.29	0.88	0.93
	1000	0.013	0.20	0.89	0.94
	2000	0.016	0.14	0.90	0.95
$\hat{\delta}(1)$	50	0.088	2.07	0.85	0.89
	100	0.080	1.46	0.87	0.92
	250	0.071	0.92	0.89	0.94
	500	0.080	0.65	0.90	0.95
	1000	0.079	0.46	0.90	0.95
	2000	0.094	0.34	0.90	0.95

Need for Sensitivity Analysis

- The sequential ignorability assumption is often too strong!
- Need to assess the robustness of findings via sensitivity analysis

Assumption 3 (Ignorability of Treatment Assignment)

$$
\left\{Y_{i}(t, m), M_{i}(t)\right\} \Perp T_{i} \mid X_{i}
$$

- Parametric and nonparametric sensitivity analysis under Assumption 3 alone
- Maximal degree of departure from Assumption 1 while maintaining the original conclusion

Parametric Sensitivity Analysis

- Assumption 3 implies $\epsilon_{2 i} \Perp T_{i}$ and $\epsilon_{3 i} \Perp T_{i}$ but not $\epsilon_{2 i} \Perp \epsilon_{3 i}$
- Sensitivity parameter: $\rho \equiv \operatorname{Corr}\left(\epsilon_{2 i}, \epsilon_{3 i}\right)$

Theorem 4 (Identification with a Known Error Correlation)

Under Assumption 3,

$$
\bar{\delta}(0)=\bar{\delta}(1)=\beta_{2}\left(\frac{\sigma_{23}^{*}}{\sigma_{2}^{2}}-\frac{\rho}{\sigma_{2}} \sqrt{\frac{1}{1-\rho^{2}}\left(\sigma_{3}^{* 2}-\frac{\sigma_{23}^{*}{ }^{2}}{\sigma_{2}^{2}}\right)}\right),
$$

where $\sigma_{j}^{2} \equiv \operatorname{Var}\left(\epsilon_{j i}\right)$ for $j=2,3, \sigma_{3}^{* 2} \equiv \operatorname{Var}\left(\epsilon_{3 i}^{*}\right), \sigma_{23}^{*} \equiv \operatorname{Cov}\left(\epsilon_{2 i}, \epsilon_{3 i}^{*}\right)$, and $\epsilon_{3 i}^{*}=\gamma \epsilon_{2 i}+\epsilon_{3 i}$.

- Fit the following LSEM via eq.-by-eq. least squares or SUR

$$
\begin{aligned}
M_{i} & =\alpha_{2}+\beta_{2} T_{i}+\epsilon_{2 i} \\
Y_{i} & =\alpha_{3}^{*}+\beta_{3}^{*} T_{i}+\epsilon_{3 i}^{*}
\end{aligned}
$$

- Monotone function of ρ

$$
\frac{\partial}{\partial \rho} \bar{\delta}(t)=-\frac{\beta_{2}}{\sigma_{2}\left(1-\rho^{2}\right)} \sqrt{\frac{1}{1-\rho^{2}}\left(\sigma_{3}^{* 2}-\frac{\sigma_{23}^{*}}{\sigma_{2}^{2}}\right)}
$$

- $\bar{\delta}(t)=0$ if and only if $\rho=\operatorname{Corr}\left(\epsilon_{2 i}, \epsilon_{3 i}^{*}\right)$ (easy to compute!)
- For confidence intervals, apply the iterative FGLS algorithm to

$$
\begin{aligned}
M_{i} & =\alpha_{2}+\beta_{2} T_{i}+\epsilon_{2 i} \\
Y_{i} & =\alpha_{3}+\beta_{3} T_{i}+\gamma M_{i}+\epsilon_{3 i}
\end{aligned}
$$

Large Sample Nonparametric Bounds

- Balke and Pearl (1997)'s strategy: discrete outcome and mediator
- Binary case: population probabilities of 64 types

$$
\begin{gathered}
\pi_{y_{11} y_{10} y_{01} y_{00}}^{m_{1} m_{0}} \equiv \operatorname{Pr}\left(Y_{i}(1,1)=y_{11}, Y_{i}(1,0)=y_{10}, Y_{i}(0,1)=y_{01},\right. \\
\left.Y_{i}(0,0)=y_{00}, M_{i}(1)=m_{1}, M_{i}(0)=m_{0}\right)
\end{gathered}
$$

- Mediation effects as a linear function of π

$$
\bar{\delta}(t)=\sum_{m=0}^{1} \sum_{y_{1}-t, m}^{1} \sum_{y_{1,1-m}=0}^{1} \sum_{y_{0,1-m}=0}^{1}\left(\sum_{m_{0}=0}^{1} \pi_{y_{11} y_{y_{10}} y_{01} y_{00}}^{m_{0}}-\sum_{m_{1}=0}^{1} \pi_{y_{11} y_{10} y_{01} y_{00}}^{m_{1} m}\right)
$$

- Assumption 3 implies linear restrictions

$$
\operatorname{Pr}\left(Y_{i}=y, M_{i}=m \mid T_{i}=t\right)=\sum_{y_{1}-t, m=0}^{1} \sum_{y_{t, 1-m}=0}^{1} \sum_{y_{1}-t, 1-m=0}^{1} \sum_{m_{1-t}=0}^{1} \pi_{y_{11} y_{10} y_{01} y_{00}}^{m_{1} m_{0}},
$$

where $m_{t}=m$ and $y_{t m}=y$.

- Symbolic linear programming

Theorem 5 (Sharp Large Sample Bounds)

Under Assumption 3 the sharp large sample bounds of the average causal mediation effects are given by,

$$
\left.\begin{array}{c}
\max \left\{\begin{array}{c}
-\operatorname{Pr}\left(Y_{i}=1-t \mid T_{i}=t\right) \\
-\operatorname{Pr}\left(M_{i}=1-t \mid T_{i}=1-t\right)-\operatorname{Pr}\left(Y_{i}=M_{i}=1-t \mid T_{i}=t\right) \\
-\operatorname{Pr}\left(M_{i}=t \mid T_{i}=1-t\right)-\operatorname{Pr}\left(Y_{i}=1-t, M_{i}=t \mid T_{i}=t\right)
\end{array}\right\} \leq \\
\operatorname{Pr}\left(Y_{i}=t \mid T_{i}=t\right)
\end{array}\right\} \begin{gathered}
\bar{\delta}(t) \leq \min \left\{\begin{array}{c}
\operatorname{Pr}\left(M_{i}=1-t \mid T_{i}=1-t\right)+\operatorname{Pr}\left(Y_{i}=t, M_{i}=1-t \mid T_{i}=t\right) \\
\operatorname{Pr}\left(M_{i}=t \mid T_{i}=1-t\right)+\operatorname{Pr}\left(Y_{i}=M_{i}=t \mid T_{i}=t\right)
\end{array}\right\},
\end{gathered}
$$

for $t=0,1$.

- $[\alpha, \beta]$ always improves upon $[-1,1] ; \beta-\alpha \leq 1$
- Not very informative $-1 \leq \alpha \leq 0 \leq \beta \leq 1$
- Possible to impose the no-interaction assumption $\bar{\delta}(1)=\bar{\delta}(0)$

Nonparametric Sensitivity Analysis

- Bounds are not informative even under additional assumptions
- Ignorability of the mediator implies

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{i}(1,1)\right. & \left.=y_{11}, Y_{i}(1,0)=y_{10}, Y_{i}(0,1)=y_{01}, Y_{i}(0,0)=y_{00} \mid M_{i}=1, T_{i}=t^{\prime}\right) \\
=\operatorname{Pr}\left(Y_{i}(1,1)\right. & \left.=y_{11}, Y_{i}(1,0)=y_{10}, Y_{i}(0,1)=y_{01}, Y_{i}(0,0)=y_{00} \mid M_{i}=0, T_{i}=t^{\prime}\right)
\end{aligned}
$$

- Sensitivity parameter:

$$
\begin{aligned}
& \left|\frac{\sum_{m_{0}=0}^{1} \pi_{y_{11} y_{10} y_{01} y_{00}}^{1 m_{0}}}{\operatorname{Pr}\left(M_{i}=1 \mid T_{i}=1\right)}-\frac{\sum_{m_{0}=0}^{1} \pi_{y_{1+1} y_{10} y_{01} y_{00}}^{0 m_{0}}}{\operatorname{Pr}\left(M_{i}=0 \mid T_{i}=1\right)}\right| \leq \rho, \\
& \left|\frac{\sum_{m_{1}=0}^{1} \pi_{y_{11} y_{10} y_{01} y_{00}}^{m_{1} 1}}{\operatorname{Pr}\left(M_{i}=1 \mid T_{i}=0\right)}-\frac{\sum_{m_{1}=0}^{1} \pi_{y_{11} y_{10} y_{01} y_{00}}^{m_{1} 0}}{\operatorname{Pr}\left(M_{i}=0 \mid T_{i}=0\right)}\right| \leq \rho,
\end{aligned}
$$

where $0 \leq \rho \leq 1$

- Compute the sharp bounds for various values of ρ

Political Psychology Experiment: Nelson et al. (APSR)

- How does media framing affect citizens' political opinions?
- News stories about the Ku Klux Klan rally in Ohio
- Free speech frame ($T_{i}=0$) and public order frame ($T_{i}=1$)
- Randomized experiment with the sample size $=136$
- Mediators: general attitudes (12 point scale) about the importance of free speech and public order
- Outcome: tolerance (7 point scale) for the Klan rally
- Expected findings: negative mediation effects

Analysis under Sequential Ignorability

	Mediator	
Estimator	Public Order	Free Speech
Parametric		
No-interaction	-0.510	-0.126
	$[-0.969,-0.051]$	$[-0.388,0.135]$
$\hat{\delta}(0)$	-0.451	-0.131
	$[-0.871,-0.031]$	$[-0.404,0.143]$
$\hat{\delta}(1)$	-0.566	-0.122
Nonparametric	$[-1.081,-0.050]$	$[-0.380,0.136]$
$\hat{\delta}(0)$	-0.374	
	$[-0.823,0.074]$	$[-0.434,0.246]$
$\hat{\delta}(1)$	-0.596	-0.222
	$[-1.168,-0.024]$	$[-0.662,0.219]$

Sensitivity Analysis

Concluding Remarks and Future Work

- Nonparametric identification under sequential ignorability
- Parametric identification under LSEM
- Nonparametric estimator and its asymptotic variance
- Nonparametric and parametric sensitivity analysis
- Nonparametric sensitivity analysis in a more general setting
- Nonparametric estimation under the no-interaction assumption
- Use of parametric/nonparametric regressions in practical causal mediation analysis
- Extension to multiple mediators

