Causal Inference with Interference and Noncompliance in Two-Stage Randomized Controlled Trials

Kosuke Imai[†] Zhichao Jiang[†] Anup Malani[‡]

[†]Harvard University [‡]University of Chicago

Biostatistics, Bioinformatics, and Biomathematics Seminar Georgetown University

October 12, 2018

Methodological Motivation: Two-stage RCTs

- Causal inference revolution over the last three decades
- The first half of this revolution → no interference between units

- In social sciences, interference is the rule rather than the exception
- Significant methodological progress over the last decade
- Experimental solution: two-stage randomized controlled trials (Hudgens and Halloran, 2008)
- We consider interference, both from encouragement to treatment and from treatment to outcome, in the presence of noncompliance

Empirical Motivation: Indian Health Insurance Experiment

- What are the health and financial effects of expanding a national health insurance program?
- RSBY (Rashtriya Swasthya Bima Yojana) subsidizes health insurance for "below poverty line" (BPL) Indian households
 - Monthly household income below ₹900 (rural) / 1,100 (urban) in Karnakata
 - Pays for hospitalization expenses
 - No deductible or copay with the annual limit of ₹30,000
 - Household pays ₹30 for smart card fee
 - Government pays about ₹200 for insurance premium in Karnakata
- We conduct an RCT to evaluate the impact of expanding RSBY to non-poor (i.e., APL or above poverty line) households
- Does health insurance have spillover effects on non-beneficiaries?

Study Design

- Sample: 10,879 households in 435 villages
- Experimental conditions:
 - Opportunity to enroll in RSBY essentially for free
 - No intervention
- Time line:
 - September 2013 February 2014: Baseline survey
 - April May 2015: Enrollment
 - September 2016 January 2017: Endline survey
- Two stage randomization:

Mechanisms	Village prop.	Treatment	Control
High	50%	80%	20%
Low	50%	40%	60%

Causal Inference and Interference between Units

- Causal inference without interference between units
 - Potential outcomes: $Y_i(1)$ and $Y_i(0)$
 - Observed outcome: $Y_i = Y_i(T_i)$
 - Causal effect: $Y_i(1) Y_i(0)$
- Causal inference with interference between units
 - Potential outcomes: $Y_i(t_1, t_2, \dots, t_N)$
 - Observed outcome: $Y_i = Y_i(T_1, T_2, \dots, T_N)$
 - Causal effects:
 - Direct effect = $Y_i(T_i = 1, T_{-i} = t) Y_i(T_i = 0, T_{-i} = t)$
 - Spillover effect = $Y_i(T_i = t, \mathbf{T}_{-i} = \mathbf{t}) Y_i(T_i = t, \mathbf{T}_{-i} = \mathbf{t}')$

Fundamental problem of causal infernece → only one potential outcome is observed

Two-stage Randomized Experiments

- Individuals (households): i = 1, 2, ..., N
- Blocks (villages): i = 1, 2, ..., J
- Size of block j: n_i where $N = \sum_{i=1}^{J} n_i$
- Binary treatment assignment mechanism: $A_i \in \{0, 1\}$
- Binary encouragement to receive treatment: $Z_{ii} \in \{0,1\}$
- Binary treatment indicator: $D_{ii} \in \{0,1\}$
- Observed outcome: Y_{ii}
- Partial interference assumption: No interference across blocks
 - Potential treatment and outcome: $D_{ii}(\mathbf{z}_i)$ and $Y_{ii}(\mathbf{z}_i)$
 - Observed treatment and outcome: $D_{ij} = D_{ij}(\mathbf{Z}_i)$ and $Y_{ij} = Y_{ij}(\mathbf{Z}_i)$
- Number of potential values reduced from 2^N to 2^{n_j}

Intention-to-Treat Analysis: Causal Quantities of Interest

• Average outcome under the treatment $Z_{ij} = z$ and the assignment mechanism $A_i = a$:

$$\overline{Y}_{ij}(z,a) = \sum_{\mathbf{z}_{-i,j}} Y_{ij}(Z_{ij} = z, \mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)$$

Average direct effect of encouragement on outcome:

$$ADE^{Y}(a) = \frac{1}{N} \sum_{i=1}^{J} \sum_{j=1}^{n_{j}} \left\{ \overline{Y}_{ij}(1, a) - \overline{Y}_{ij}(0, a) \right\}$$

Average spillover effect of encouragement on outcome:

$$\mathsf{ASE}^{Y}(z) = \frac{1}{N} \sum_{i=1}^{J} \sum_{j=1}^{n_j} \left\{ \overline{Y}_{ij}(z,1) - \overline{Y}_{ij}(z,0) \right\}$$

Horvitz-Thompson estimator for unbiased estimation

Effect Decomposition

• Average total effect of encouragement on outcome:

$$ATE^{Y} = \frac{1}{N} \sum_{j=1}^{J} \sum_{i=1}^{n_{j}} \left\{ \overline{Y}_{ij}(1,1) - \overline{Y}_{ij}(0,0) \right\}$$

Total effect = Direct effect + Spillover effect:

$$ATE^Y = ADE^Y(1) + ASE^Y(0) = ADE^Y(0) + ASE^Y(1)$$

In a two-stage RCT, we have an unbiased estimator,

$$\mathbb{E}\left[\frac{\sum_{j=1}^{J}\mathbf{1}\{A_{j}=a\}\frac{n_{j}}{N}\frac{\sum_{i=1}^{n_{j}}\mathbf{1}\{Z_{ij}=z\}}{\sum_{i=1}^{n_{j}}\mathbf{1}\{Z_{ij}=z\}}}{\frac{1}{J}\sum_{j=1}^{J}\mathbf{1}\{A_{j}=a\}}\right] = \frac{1}{N}\sum_{j=1}^{J}\sum_{i=1}^{n_{j}}\overline{Y}_{ij}(z,a)$$

• Halloran and Struchiner (1995), Sobel (2006), Hudgens and Halloran (2008)

Complier Average Direct Effect

- Goal: Estimate the treatment effect rather than the ITT effect
- Use randomized encouragement as an instrument
 - **1** Monotonicity: $D_{ii}(1, \mathbf{z}_{-i,j}) \geq D_{ii}(0, \mathbf{z}_{-i,j})$ for any $\mathbf{z}_{-i,j}$
 - **2** Exclusion restriction: $Y_{ii}(\mathbf{z}_i, \mathbf{d}_i) = Y_{ii}(\mathbf{z}_i', \mathbf{d}_i)$ for any \mathbf{z}_i and \mathbf{z}_i'
- Compliers: $C_{ii}(\mathbf{z}_{-i,i}) = \mathbf{1}\{D_{ii}(1,\mathbf{z}_{-i,i}) = 1, D_{ii}(0,\mathbf{z}_{-i,i}) = 0\}$
- Complier average direct effect of encouragement (CADE(z, a)):

$$\frac{\sum_{j=1}^{J} \sum_{i=1}^{n_{j}} \{Y_{ij}(1, \mathbf{z}_{-i,j}) - Y_{ij}(0, \mathbf{z}_{-i,j})\} C_{ij}(\mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)}{\sum_{j=1}^{J} \sum_{i=1}^{n_{j}} C_{ij}(\mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)}$$

We propose a consistent estimator of the CADE

Key Identification Assumption

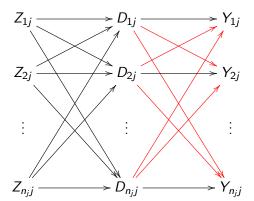
- Two causal mechanisms:
 - Z_{ij} affects Y_{ij} through D_{ij}
- Z_{ij} affects Y_{ij} through $\mathbf{D}_{-i,j}$
- ullet Idea: if Z_{ij} does not affect D_{ij} , it should not affect Y_{ij} through $oldsymbol{D}_{-i,j}$

Assumption (Restricted Interference for Noncompliers)

If a unit has $D_{ij}(1, \mathbf{z}_{-i,j}) = D_{ij}(0, \mathbf{z}_{-i,j}) = d$ for any given $\mathbf{z}_{-i,j}$, it must also satisfy $Y_{ij}(d, \mathbf{D}_{-i,j}(Z_{ij} = 1, \mathbf{z}_{-i,j})) = Y_{ij}(d, \mathbf{D}_{-i,j}(Z_{ij} = 0, \mathbf{z}_{-i,j}))$

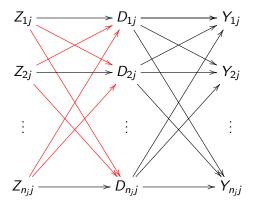
Scenario I: No Spillover Effect of the Treatment Receipt on the Outcome

$$Y_{ij}(d_{ij},\mathbf{d}_{-i,j}) = Y_{ij}(d_{ij},\mathbf{d}'_{-i,j})$$



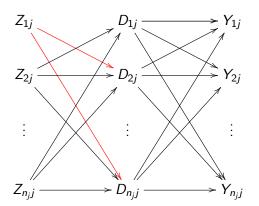
Scenario II: No Spillover Effect of the Treatment Assignment on the Treatment Receipt

$$D_{ij}(z_{ij}, \mathbf{z}_{-i,j}) = D_{ij}(z_{ij}, \mathbf{z}'_{-i,j})$$
 (Kang and Imbens, 2016)



Scenario III: Limited Spillover Effect of the Treatment Assignment on the Treatment Receipt

If
$$D_{ij}(1, \mathbf{z}_{-i,j}) = D_{ij}(0, \mathbf{z}_{-i,j})$$
 for any given $\mathbf{z}_{-i,j}$,
then $D_{i'j}(1, \mathbf{z}_{-i,j}) = D_{i'j}(0, \mathbf{z}_{-i,j})$ for all $i' \neq i$



Identification and Consistent Estimation

Identification: monotonicity, exclusion restriction, restricted interference for noncompliers

$$\lim_{n_j \to \infty} \mathsf{CADE}(z, a) = \lim_{n_j \to \infty} \frac{\mathsf{ADE}^Y(a)}{\mathsf{ADE}^D(a)}$$

Consistent estimation: additional restriction on interference (e.g., Savje et al.)

$$\frac{\widehat{\mathsf{ADE}}^{\mathsf{Y}}(a)}{\widehat{\mathsf{ADE}}^{\mathsf{D}}(a)} \stackrel{p}{\longrightarrow} \lim_{n_j \to \infty, J \to \infty} \mathsf{CADE}(z, a)$$

Randomization Inference

Variance is difficult to characterize

Assumption (Stratified Interference (Hudgens and Halloran. 2008))

$$Y_{ij}(z_{ij}, \mathbf{z}_{-i,j}) = Y_{ij}(z_{ij}, \mathbf{z}'_{-i,j})$$
 and $D_{ij}(z_{ij}, \mathbf{z}_{-i,j}) = D_{ij}(z_{ij}, \mathbf{z}'_{-i,j})$ if $\sum_{i'=1}^{n_j} z_{ij} = \sum_{i=1}^{n_j} z'_{ij}$

Under stratified interference, our estimand simplifies to,

$$= \frac{\text{CADE}(a)}{\sum_{j=1}^{J} \sum_{i=1}^{n_j} \{Y_{ij}(1, a) - Y_{ij}(0, a)\} \mathbf{1} \{D_{ij}(1, a) = 1, D_{ij}(0, a) = 0\}}{\sum_{j=1}^{J} \sum_{i=1}^{n_j} \mathbf{1} \{D_{ij}(1, a) = 1, D_{ij}(0, a) = 0\}}$$

- Compliers: $C_{ij} = \mathbf{1}\{D_{ij}(1, a) = 1, D_{ij}(0, a) = 0\}$
- Consistent estimation possible without additional restriction
- We propose an approximate asymptotic variance estimator

Connection to the Two-stage Least Squares Estimator

• The model:

$$Y_{ij} = \sum_{a=0}^{1} \alpha_{a} \mathbf{1} \{ A_{j} = a \} + \sum_{a=0}^{1} \underbrace{\beta_{a}}_{\mathsf{CADE}} D_{ij} \mathbf{1} \{ A_{j} = a \} + \epsilon_{ij}$$

$$D_{ij} = \sum_{a=0}^{1} \gamma_{a} \mathbf{1} \{ A_{j} = a \} + \sum_{a=0}^{1} \delta_{a} Z_{ij} \mathbf{1} \{ A_{j} = a \} + \eta_{ij}$$

Weighted two-stage least squares estimator:

$$w_{ij} = \frac{1}{\Pr(A_j)\Pr(Z_{ij} \mid A_j)}$$

- ullet Transforming the outcome and treatment: multiplying them by $n_j J/N$
- Randomization-based variance is equal to the weighted average of cluster-robust HC2 and individual-robust HC2 variances

Complier Average Spillover Effect

 Under stratified interference, we can define the average spillover effect for compliers

Assumption (Monotonicity with respect to Assignment Mechanism)

$$D_{ij}(z,1) \geq D_{ij}(z,0)$$

- Compliers: $\mathbf{1}\{D_{ij}(z,1)=1,D_{ij}(z,0)=0\}$
- Complier Average Spillover Effect (CASE):

$$= \frac{\mathsf{CASE}(z)}{\sum_{j=1}^{J} \sum_{i=1}^{n_j} \{Y_{ij}(z,1) - Y_{ij}(z,0)\} \mathbf{1} \{D_{ij}(z,1) = 1, D_{ij}(z,0) = 0\}}{\sum_{j=1}^{J} \sum_{i=1}^{n_j} \mathbf{1} \{D_{ij}(z,1) = 1, D_{ij}(z,0) = 0\}}$$

Consistent estimation:

$$\frac{\widehat{\mathsf{ASE}}^{\mathsf{Y}}(z)}{\widehat{\mathsf{ASE}}^{\mathsf{D}}(z)} \xrightarrow{p} \lim_{n_j \to \infty, J \to \infty} \mathsf{CASE}(z)$$

Simulation Setup

- Two assignment mechanisms ($A_j = 0$: 40%, $A_j = 1$: 60%):
 - **1** $Pr(Z_{ij} = 1 \mid A_i = 0) = 0.4$
 - $Pr(Z_{ij} = 1 \mid A_j = 1) = 0.6$
- Compliance status:

$$C_{ij}(a) \ = \ \begin{cases} \text{ complier} & \text{if } D_{ij}(1,a) = 1, D_{ij}(0,a) = 0 \\ \text{ always} - \text{taker} & \text{if } D_{ij}(1,a) = D_{ij}(0,a) = 1 \\ \text{ never} - \text{taker} & \text{if } D_{ij}(1,a) = D_{ij}(0,a) = 0 \end{cases}$$

- - a = 1: (60%, 20%, 20%)
- No spillover effect: $C_{ij}(1) = C_{ij}(0)$ for all i, j and (50%, 30%, 20%)

No spillover effect of treatment on outcome

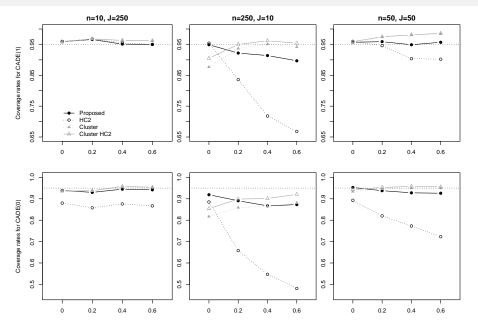
$$egin{aligned} Y_{ij}(d_{ij}=0) & \stackrel{ ext{i.i.d.}}{\sim} & \mathcal{N}(0,1) \ Y_{ij}(1) - Y_{ij}(0) & \stackrel{ ext{indep.}}{\sim} & \mathcal{N}(heta_j,\sigma^2) \end{aligned}$$

• Spillover effect of treatment on outcome: \rightsquigarrow stratified interference

$$Y_{ij}(0, \mathbf{d}_{-i,j}) \stackrel{\mathrm{indep.}}{\sim} \mathcal{N}\left(rac{eta}{n_j} \sum_{i'} d_{i'j}, 1
ight)$$
 $Y_{ij}(1, \mathbf{d}_{-i,j}) - Y_{ij}(0, \mathbf{d}_{-i,j}) \stackrel{\mathrm{indep.}}{\sim} \mathcal{N}(heta_j, \sigma^2)$

- $\theta_i \stackrel{\text{indep.}}{\sim} \mathcal{N}(\theta, \omega^2)$
- Vary intracluster correlation coefficient $\rho = \omega^2/(\sigma^2 + \omega^2)$
- Vary cluster size n and number of clusters J

Results: Both Spillover Effects Present



Results: Indian Health Insurance Experiment

 A household is more likely to enroll in RSBY if a large number of households are given the opportunity

Average Spillover Effects	Treatment	Control
Individual-weighted	0.086 (s.e. = 0.053)	0.045 (s.e. = 0.028)
Block-weighted	0.044 (s.e. = 0.018)	0.031 (s.e. = 0.021)

 Households will have greater hospitalization expenditure if few households are given the opportunity

Complier Average Direct Effects	High	Low
Individual-weighted	-1649 (s.e. $=1061$)	1984 (s.e. = 1215)
Block-weighted	-485 (s.e. $=1258$)	3752 (s.e. = 1652)

Concluding Remarks

- In social science research,
 - people interact with each other → interference
 - ② people don't follow instructions → noncompliance
- Two-stage randomized controlled trials:
 - randomize assignment mechanisms across clusters
 - 2 randomize treatment assignment within each cluster
- Our contributions:
 - Identification condition for complier average direct effects
 - Consistent estimator for CADE and its variance
 - Onnections to regression and instrumental variables
 - Application to the India health insurance experiment
 - Implementation as part of R package experiment

Send comments and suggestions to Imai@Harvard.Edu