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Overview

Individualized treatment rules (ITRs)
personalized medicine
micro-targeting in business and politics

Existing literature:
development of optimal ITRs
estimation of heterogeneous treatment effects

We propose to use a randomized experiment to evaluate ITRs
1 Neyman’s repeated sampling framework

randomized treatment assignment, random sampling
no modeling assumption or asymptotic approximation

2 Cross-validation
same experimental data used to estimate and evaluate ITRs
additional uncertainty due to the estimation of ITRs

3 Evaluation measures
incorporating a budget constraint
Area under the prescriptive effect curve (AUPEC)
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Evaluation without a Budget Constraint

Setup
Binary treatment: Ti ∈ {0,1}
Pre-treatment covariates: X ∈ X
No interference:

Yi (T1 = t1,T2 = t2, . . . ,Tn = tn) = Yi (Ti = ti )

Random sampling of units:

(Yi (1),Yi (0),Xi )
i.i.d.∼ P

Completely randomized treatment assignment:

Pr(Ti = 1 | Yi (1),Yi (0),Xi ) =
n1

n
where n1 =

n∑
i=1

Ti

(Fixed for now) ITR:
f : X −→ {0,1}
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Inference for the Standard Metric

Standard metric (Population Average “Value” or PAV):

λf = E{Yi(f (Xi))}

A natural estimator:

λ̂f (Z) =
1
n1

n∑
i=1

YiTi f (Xi) +
1
n0

n∑
i=1

Yi(1− Ti)(1− f (Xi)),

where Z = {Xi ,Ti ,Yi}ni=1

Unbiasedness: E{λ̂f (Z)} = λf

Variance:

V{λ̂f (Z)} =
E(S2

f1)

n1
+

E(S2
f0)

n0
,

where S2
ft =

∑n
i=1(Yfi(t)− Yf (t))2/(n − 1),

Yfi(t) = 1{f (Xi) = t}Yi(t), and Yf (t) =
∑n

i=1 Yfi(t)/n for t = {0,1}.
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Accounting for the Proportion of the Treated Units

If the treatment is not harmful, then treating everyone is optimal
Baseline: random (non-individualized) treatment rule
Called “lift” in applied fields

The Population Average Prescription Effect

τf = E{Yi(f (Xi))− pf Yi(1)− (1− pf )Yi(0)}

where pf = Pr(f (Xi) = 1)

We propose an unbiased estimator of τf , derive its variance, and
propose its consistent estimator

Not invariant to additive transformation: Yi + c
Solution: centering E(Yi(1) + Yi(0)) = 0 minimum variance
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Estimating and Evaluating ITRs

We may estimate and evaluate an ITR using the same
experimental data
How should we account for the estimation uncertainty as well as
the evaluation uncertainty under the Neyman’s framework?
Setup:

Learning algorithm
F : Z −→ F .

K -fold cross-validation

f̂−k = F (Z−k )

Evaluation metric estimators:

λ̂F =
1
K

K∑
k=1

λ̂f̂−k
(Zk ), τ̂F =

1
K

K∑
k=1

τ̂f̂−k
(Zk )

What are we estimating? What about uncertainty?
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Causal Estimands

Population Average Value (PAV)
Treatment assignment proportion given Xi = x

f̄F (x) = E{f̂Z tr (x) | Xi = x} = Pr(f̂Z tr (x) = 1 | Xi = x)

averaging over the random sampling of training data Z tr

Estimand

λF = E
{

f̄F (Xi )Yi (1) + (1− f̄F (Xi ))Yi (0)
}

Population Average Prescriptive Effect (PAPE)
Proportion treated

pF = E{f̄F (Xi )}.

Estimand

τF = E{λF − pF Yi (1)− (1− pF )Yi (0)}.
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Inference under Cross-Validation

Under Neyman’s framework, the cross-validation estimators are
unbiased, i.e., E(λ̂F ) = λF and E(τ̂F ) = τF

The variance of the PAV estimator

V(λ̂F ) =
E(S2

f̂1
)

m1
+

E(S2
f̂0

)

m0
+ E

{
Cov(f̂Z tr (Xi), f̂Z tr (Xj) | Xi ,Xj)τiτj

}
︸ ︷︷ ︸

estimation uncertainty of ITR

− K − 1
K

E(S2
F )︸ ︷︷ ︸

efficiency gain due
to cross−validation

for i 6= j where mt is the size of the training set with Ti = t ,

τi = Yi(1)− Yi(0), S2
F =

∑K
k=1

{
λ̂f̂−k

(Zk )− λ̂f̂−k
(Zk )

}2
/(K − 1)

Estimation of the variance requires care for small K
Analogous results for the PAPE
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Evaluation with a Budget Constraint

Policy makers often face a binding budget constraint p < pf

Scoring rule:
s : X −→ S where S ⊂ R

(Fixed) ITR with a budget constraint:

f (Xi , c) = 1{s(Xi) > c},

where cp(f ) = inf{c ∈ R : Pr(f (Xi , c) = 1) ≤ p}
Prominent example: s(x) = E(Yi(1)− Yi(0) | Xi = x)

PAPE under a budget constraint

τfp = E{Yi(f (Xi , cp(f )))− pYi(1)− (1− p)Yi(0)}.

We derive the bias (and its finite sample bound) and variance
under the Neyman’s framework
Extensions: cross-validation, diff. in PAPE between two ITRs
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The Area Under Prescriptive Effect Curve

Budget, p

Average outcome

E[Yi(0)]

E[Yi(1)]

E[Yi(f (Xi , c1/n))]

E[Yi(f (Xi , c2/n))]

1
n

2
n

pf

Measure of performance across different budget constraints
We show how to do inference with and without cross-validation
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Application to the STAR Experiment

AUPEC = 23.60 (s.e. = 4.02) AUPEC = 20.00 (s.e. = 4.14) AUPEC = -6.20 (s.e. = 4.13)

BART Causal Forest LASSO
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AUPEC = 10.83 (s.e. = 3.92) AUPEC = 15.34 (s.e. = 4.08) AUPEC = 7.18 (s.e. = 4.04)

BART Causal Forest LASSO
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Concluding Remarks

Individualized treatment rules (ITRs) are used in many fields

Inference about ITRs has been largely model-based
We show how to experimentally evaluate ITRs
We incorporate budget constraints
No modeling assumption or asymptotic approximation is required
Complex machine learning algorithms can be used
Applicable to cross-validation estimators
Simulations: good small sample performance

Paper: https://arxiv.org/abs/1905.05389
Software: https://github.com/MichaelLLi/evalITR

Extensions to dynamic ITRs, adaptive experiments?
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