Experimental Evaluation of Individualized Treatment Rules

Kosuke Imai

Department of Government Department of Statistics Harvard University

Adaptive Experimentation Workshop, Facebook February 13, 2020

Joint work with Michael Lingzhi Li (MIT)

Kosuke Imai (Harvard)

Overview

- Individualized treatment rules (ITRs)
 - personalized medicine
 - micro-targeting in business and politics
- Existing literature:
 - development of optimal ITRs
 - estimation of heterogeneous treatment effects
- We propose to use a randomized experiment to evaluate ITRs
 - Neyman's repeated sampling framework
 - randomized treatment assignment, random sampling
 - no modeling assumption or asymptotic approximation
 - 2 Cross-validation
 - same experimental data used to estimate and evaluate ITRs
 - additional uncertainty due to the estimation of ITRs
 - Evaluation measures
 - incorporating a budget constraint
 - Area under the prescriptive effect curve (AUPEC)

Evaluation without a Budget Constraint

Setup

- Binary treatment: $T_i \in \{0, 1\}$
- Pre-treatment covariates: $\textbf{X} \in \mathcal{X}$
- No interference:

$$Y_i(T_1 = t_1, T_2 = t_2, \ldots, T_n = t_n) = Y_i(T_i = t_i)$$

• Random sampling of units:

$$(Y_i(1), Y_i(0), \mathbf{X}_i) \overset{\text{i.i.d.}}{\sim} \mathcal{P}$$

• Completely randomized treatment assignment:

$$\Pr(T_i = 1 | Y_i(1), Y_i(0), \mathbf{X}_i) = \frac{n_1}{n} \text{ where } n_1 = \sum_{i=1}^n T_i$$

(Fixed for now) ITR:

$$f: \mathcal{X} \longrightarrow \{0, 1\}$$

n

Inference for the Standard Metric

• Standard metric (Population Average "Value" or PAV):

$$\lambda_f = \mathbb{E}\{Y_i(f(\mathbf{X}_i))\}$$

A natural estimator:

$$\hat{\lambda}_{f}(\mathcal{Z}) = \frac{1}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} f(\mathbf{X}_{i}) + \frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) (1 - f(\mathbf{X}_{i})),$$

where $\mathcal{Z} = \{\mathbf{X}_i, T_i, Y_i\}_{i=1}^n$

- Unbiasedness: $\mathbb{E}\{\hat{\lambda}_f(\mathcal{Z})\} = \lambda_f$
- Variance:

$$\mathbb{V}\{\hat{\lambda}_f(\mathcal{Z})\} = \frac{\mathbb{E}(S_{f_1}^2)}{n_1} + \frac{\mathbb{E}(S_{f_0}^2)}{n_0},$$

where $S_{ft}^2 = \sum_{i=1}^n (Y_{fi}(t) - \overline{Y_f(t)})^2 / (n-1)$, $Y_{fi}(t) = \mathbf{1} \{ f(\mathbf{X}_i) = t \} Y_i(t)$, and $\overline{Y_f(t)} = \sum_{i=1}^n Y_{fi}(t) / n$ for $t = \{0, 1\}$.

Kosuke Imai (Harvard)

Accounting for the Proportion of the Treated Units

- If the treatment is not harmful, then treating everyone is optimal
- Baseline: random (non-individualized) treatment rule
- Called "lift" in applied fields
- The Population Average Prescription Effect

$$\tau_{f} = \mathbb{E}\{Y_{i}(f(\mathbf{X}_{i})) - p_{f}Y_{i}(1) - (1 - p_{f})Y_{i}(0)\}$$

where $p_f = \Pr(f(\mathbf{X}_i) = 1)$

- We propose an unbiased estimator of *τ_f*, derive its variance, and propose its consistent estimator
- Not invariant to additive transformation: $Y_i + c$
- Solution: centering $\mathbb{E}(Y_i(1) + Y_i(0)) = 0 \rightsquigarrow$ minimum variance

Estimating and Evaluating ITRs

- We may estimate and evaluate an ITR using the same experimental data
- How should we account for the estimation uncertainty as well as the evaluation uncertainty under the Neyman's framework?
- Setup:
 - Learning algorithm

$$F: \mathcal{Z} \longrightarrow \mathcal{F}.$$

• K-fold cross-validation

$$\hat{f}_{-k} = F(\mathcal{Z}_{-k})$$

Evaluation metric estimators:

$$\hat{\lambda}_F = \frac{1}{K} \sum_{k=1}^K \hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_k), \quad \hat{\tau}_F = \frac{1}{K} \sum_{k=1}^K \hat{\tau}_{\hat{f}_{-k}}(\mathcal{Z}_k)$$

What are we estimating? What about uncertainty?

Causal Estimands

- Population Average Value (PAV)
 - Treatment assignment proportion given $\mathbf{X}_i = \mathbf{x}$

$$\overline{f}_{F}(\mathbf{x}) = \mathbb{E}\{\widehat{f}_{\mathcal{Z}^{tr}}(\mathbf{x}) \mid \mathbf{X}_{i} = \mathbf{x}\} = \mathsf{Pr}(\widehat{f}_{\mathcal{Z}^{tr}}(\mathbf{x}) = 1 \mid \mathbf{X}_{i} = \mathbf{x})$$

averaging over the random sampling of training data \mathcal{Z}^{tr} \bullet Estimand

$$\lambda_F = \mathbb{E}\left\{\overline{f}_F(\mathbf{X}_i)Y_i(1) + (1 - \overline{f}_F(\mathbf{X}_i))Y_i(0)\right\}$$

Population Average Prescriptive Effect (PAPE)

Proportion treated

$$p_F = \mathbb{E}\{\overline{f}_F(\mathbf{X}_i)\}.$$

Estimand

$$\tau_F = \mathbb{E}\{\lambda_F - p_F Y_i(1) - (1 - p_F) Y_i(0)\}.$$

Inference under Cross-Validation

- Under Neyman's framework, the cross-validation estimators are unbiased, i.e., E(λ̂_F) = λ_F and E(τ̂_F) = τ_F
- The variance of the PAV estimator

$$\mathbb{V}(\hat{\lambda}_{F}) = \frac{\mathbb{E}(S_{\hat{f}1}^{2})}{m_{1}} + \frac{\mathbb{E}(S_{\hat{f}0}^{2})}{m_{0}} + \underbrace{\mathbb{E}\left\{\operatorname{Cov}(\hat{f}_{\mathcal{Z}^{tr}}(\mathbf{X}_{i}), \hat{f}_{\mathcal{Z}^{tr}}(\mathbf{X}_{j}) \mid \mathbf{X}_{i}, \mathbf{X}_{j})\tau_{i}\tau_{j}\right\}}_{estimation \ uncertainty \ of \ ITR} - \underbrace{\frac{K - 1}{K} \mathbb{E}(S_{F}^{2})}_{efficiency \ gain \ due}_{to \ cross-validation}}$$

for $i \neq j$ where m_t is the size of the training set with $T_i = t$, $\tau_i = Y_i(1) - Y_i(0), S_F^2 = \sum_{k=1}^{K} \left\{ \hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_k) - \overline{\hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_k)} \right\}^2 / (K-1)$

- Estimation of the variance requires care for small K
- Analogous results for the PAPE

Kosuke Imai (Harvard)

Evaluation with a Budget Constraint

Policy makers often face a binding budget constraint *p* < *p*_f
Scoring rule:

 $\boldsymbol{s}: \mathcal{X} \longrightarrow \mathcal{S}$ where $\mathcal{S} \subset \mathbb{R}$

• (Fixed) ITR with a budget constraint:

$$f(\mathbf{X}_i, \mathbf{c}) = \mathbf{1}\{\mathbf{s}(\mathbf{X}_i) > \mathbf{c}\},\$$

where $c_p(f) = \inf\{c \in \mathbb{R} : \Pr(f(\mathbf{X}_i, c) = 1) \le p\}$

- Prominent example: $s(\mathbf{x}) = \mathbb{E}(Y_i(1) Y_i(0) | \mathbf{X}_i = \mathbf{x})$
- PAPE under a budget constraint

$$\tau_{fp} = \mathbb{E}\{Y_i(f(\mathbf{X}_i, c_p(f))) - pY_i(1) - (1-p)Y_i(0)\}.$$

- We derive the bias (and its finite sample bound) and variance under the Neyman's framework
- Extensions: cross-validation, diff. in PAPE between two ITRs

Kosuke Imai (Harvard)

The Area Under Prescriptive Effect Curve

Measure of performance across different budget constraints

We show how to do inference with and without cross-validation

Kosuke Imai (Harvard)

Application to the STAR Experiment

Kosuke Imai (Harvard)

Concluding Remarks

- Individualized treatment rules (ITRs) are used in many fields
- Inference about ITRs has been largely model-based
 - We show how to experimentally evaluate ITRs
 - We incorporate budget constraints
 - No modeling assumption or asymptotic approximation is required
 - Complex machine learning algorithms can be used
 - Applicable to cross-validation estimators
 - Simulations: good small sample performance
- Paper: https://arxiv.org/abs/1905.05389
- Software: https://github.com/MichaelLLi/evalITR
- Extensions to dynamic ITRs, adaptive experiments?