Statistics and Causal Inference

Kosuke Imai

Princeton University

June 2012
Empirical Implications of Theoretical Models (EITM)
Summer Institute

Three Modes of Statistical Inference

(1) Descriptive Inference: summarizing and exploring data

- Inferring "ideal points" from rollcall votes
- Inferring "topics" from texts and speeches
- Inferring "social networks" from surveys
(2) Predictive Inference: forecasting out-of-sample data points
- Inferring future state failures from past failures
- Inferring population average turnout from a sample of voters
- Inferring individual level behavior from aggregate data
(3) Causal Inference: predicting counterfactuals
- Inferring the effects of ethnic minority rule on civil war onset
- Inferring why incumbency status affects election outcomes
- Inferring whether the lack of war among democracies can be attributed to regime types

What is "Identification"?

- Inference: Learn about what you do not observe (parameters) from what you do observe (data)
- Identification: How much can we learn about parameters from infinite amount of data?
- Ambiguity vs. Uncertainty
- Identification assumptions vs. Statistical assumptions
- Point identification vs. Partial identification
- Further Reading: C. F. Manski. (2007). Identification for Prediction and Decision. Harvard University Press.

What is Causal Inference?

- Comparison between factual and counterfactual
- Incumbency effect:

What would have been the election outcome if a candidate were not an incumbent?

- Resource curse thesis:

What would have been the GDP growth rate without oil?

- Democratic peace theory:

Would the two countries have escalated crisis in the same situation if they were both autocratic?

- Further reading: Holland, P. (1986). Statistics and causal inference. (with discussions) Journal of the American Statistical Association, Vol. 81: 945-960.

Defining Causal Effects

- Units: $i=1, \ldots, n$
- "Treatment": $T_{i}=1$ if treated, $T_{i}=0$ otherwise
- Observed outcome: Y_{i}
- Pre-treatment covariates: X_{i}
- Potential outcomes: $Y_{i}(1)$ and $Y_{i}(0)$ where $Y_{i}=Y_{i}\left(T_{i}\right)$

Voters	Contact	Turnout		Age	Party ID
i	T_{i}	$Y_{i}(1)$	$Y_{i}(0)$	X_{i}	X_{i}
1	1	1	$?$	20	D
2	0	$?$	0	55	R
3	0	$?$	1	40	R
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
n	1	0	$?$	62	D

- Causal effect: $Y_{i}(1)-Y_{i}(0)$

The Key Assumptions

- No simultaneity (different from endogeneity)
- No interference between units: $Y_{i}\left(T_{1}, T_{2}, \ldots, T_{n}\right)=Y_{i}\left(T_{i}\right)$
- Potential violations:
(1) spill-over effects
(2) carry-over effects
- Cluster randomized experiments as a solution (more later)
- Stable Unit Treatment Value Assumption (SUTVA): no interference + "the same version" of the treatment
- Potential outcome is thought to be fixed: data cannot distinguish fixed and random potential outcomes
- But, potential outcomes across units have a distribution
- Observed outcome is random because the treatment is random
- Multi-valued treatment: more potential outcomes for each unit

Causal Effects of Immutable Characteristics

- "No causation without manipulation" (Holland, 1986)
- Immutable characteristics; gender, race, age, etc.
- What does the causal effect of gender mean?
- Causal effect of having a female politician on policy outcomes (Chattopadhyay and Duflo, 2004 QJE)
- Causal effect of having a discussion leader with certain preferences on deliberation outcomes (Humphreys et al. 2006 WP)
- Causal effect of a job applicant's gender/race on call-back rates (Bertrand and Mullainathan, 2004 AER)

Average Treatment Effects

- Sample Average Treatment Effect (SATE):

$$
\frac{1}{n} \sum_{i=1}^{n} Y_{i}(1)-Y_{i}(0)
$$

- Population Average Treatment Effect (PATE):

$$
\mathbb{E}\left(Y_{i}(1)-Y_{i}(0)\right)
$$

- Population Average Treatment Effect for the Treated (PATT):

$$
\mathbb{E}\left(Y_{i}(1)-Y_{i}(0) \mid T_{i}=1\right)
$$

- Causal heterogeneity: Zero ATE doesn't mean zero effect for everyone!
- Other quantities: Conditional ATE, Quantile Treatment Effects, etc.

Classical Randomized Experiments

- Units: $i=1, \ldots, n$
- May constitute a simple random sample from a population
- Treatment: $T_{i} \in\{0,1\}$
- Outcome: $Y_{i}=Y_{i}\left(T_{i}\right)$
- Complete randomization of the treatment assignment
- Exactly n_{1} units receive the treatment
- $n_{0}=n-n_{1}$ units are assigned to the control group
- Assumption: for all $i=1, \ldots, n, \sum_{i=1}^{n} T_{i}=n_{1}$ and

$$
\left(Y_{i}(1), Y_{i}(0)\right) \Perp T_{i}, \quad \operatorname{Pr}\left(T_{i}=1\right)=\frac{n_{1}}{n}
$$

- Estimand = SATE or PATE
- Estimator $=$ Difference-in-means:

$$
\hat{\tau} \equiv \frac{1}{n_{1}} \sum_{i=1}^{n} T_{i} Y_{i}-\frac{1}{n_{0}} \sum_{i=1}^{n}\left(1-T_{i}\right) Y_{i}
$$

Estimation of Average Treatment Effects

- Key idea (Neyman 1923): Randomness comes from treatment assignment (plus sampling for PATE) alone
- Design-based (randomization-based) rather than model-based
- Statistical properties of $\hat{\tau}$ based on design features
- Define $\mathcal{O} \equiv\left\{Y_{i}(0), Y_{i}(1)\right\}_{i=1}^{n}$
- Unbiasedness (over repeated treatment assignments):

$$
\begin{aligned}
\mathbb{E}(\hat{\tau} \mid \mathcal{O}) & =\frac{1}{n_{1}} \sum_{i=1}^{n} \mathbb{E}\left(T_{i} \mid \mathcal{O}\right) Y_{i}(1)-\frac{1}{n_{0}} \sum_{i=1}^{n}\left\{1-\mathbb{E}\left(T_{i} \mid \mathcal{O}\right)\right\} Y_{i}(0) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}(1)-Y_{i}(0)\right)=\text { SATE }
\end{aligned}
$$

- Over repeated sampling: $\mathbb{E}(\hat{\tau})=\mathbb{E}(\mathbb{E}(\hat{\tau} \mid \mathcal{O}))=\mathbb{E}($ SATE $)=$ PATE

Relationship with Regression

- The model: $Y_{i}=\alpha+\beta T_{i}+\epsilon_{i}$ where $\mathbb{E}\left(\epsilon_{i}\right)=0$
- Equivalence: least squares estimate $\hat{\beta}=$ Difference in means
- Potential outcomes representation:

$$
Y_{i}\left(T_{i}\right)=\alpha+\beta T_{i}+\epsilon_{i}
$$

- Constant additive unit causal effect: $Y_{i}(1)-Y_{i}(0)=\beta$ for all i
- $\alpha=\mathbb{E}\left(Y_{i}(0)\right)$
- A more general representation:

$$
Y_{i}\left(T_{i}\right)=\alpha+\beta T_{i}+\epsilon_{i}\left(T_{i}\right) \quad \text { where } \quad \mathbb{E}\left(\epsilon_{i}(t)\right)=0
$$

- $Y_{i}(1)-Y_{i}(0)=\beta+\epsilon_{i}(1)-\epsilon_{i}(0)$
- $\beta=\mathbb{E}\left(Y_{i}(1)-Y_{i}(0)\right)$
- $\alpha=\mathbb{E}\left(Y_{i}(0)\right)$ as before

Bias of Model-Based Variance

- The design-based perspective: use Neyman's exact variance
- What is the bias of the model-based variance estimator?
- Finite sample bias:

$$
\begin{aligned}
\text { Bias } & =\mathbb{E}\left(\frac{\hat{\sigma}^{2}}{\sum_{i=1}^{n}\left(T_{i}-\bar{T}_{n}\right)^{2}}\right)-\left(\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{0}^{2}}{n_{0}}\right) \\
& =\frac{\left(n_{1}-n_{0}\right)(n-1)}{n_{1} n_{0}(n-2)}\left(\sigma_{1}^{2}-\sigma_{0}^{2}\right)
\end{aligned}
$$

- Bias is zero when $n_{1}=n_{0}$ or $\sigma_{1}^{2}=\sigma_{0}^{2}$
- In general, bias can be negative or positive and does not asymptotically vanish

Robust Standard Error

- Suppose $\operatorname{Var}\left(\epsilon_{i} \mid T\right)=\sigma^{2}\left(T_{i}\right) \neq \sigma^{2}$
- Heteroskedasticity consistent robust variance estimator:

$$
\operatorname{Var}(\widehat{(\hat{\alpha}, \hat{\beta})} \mid T)=\left(\sum_{i=1}^{n} x_{i} x_{i}^{\top}\right)^{-1}\left(\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} x_{i} x_{i}^{\top}\right)\left(\sum_{i=1}^{n} x_{i} x_{i}^{\top}\right)^{-1}
$$

where in this case $x_{i}=\left(1, T_{i}\right)$ is a column vector of length 2

- Model-based justification: asymptotically valid in the presence of heteroskedastic errors
- Design-based evaluation:

$$
\text { Finite Sample Bias }=-\left(\frac{\sigma_{1}^{2}}{n_{1}^{2}}+\frac{\sigma_{0}^{2}}{n_{0}^{2}}\right)
$$

- Bias vanishes asymptotically

Cluster Randomized Experiments

- Units: $i=1,2, \ldots, n_{j}$
- Clusters of units: $j=1,2, \ldots, m$
- Treatment at cluster level: $T_{j} \in\{0,1\}$
- Outcome: $Y_{i j}=Y_{i j}\left(T_{j}\right)$
- Random assignment: $\left(Y_{i j}(1), Y_{i j}(0)\right) \Perp T_{j}$
- Estimands at unit level:

$$
\begin{aligned}
\text { SATE } & \equiv \frac{1}{\sum_{j=1}^{m} n_{j}} \sum_{j=1}^{m} \sum_{i=1}^{n_{j}}\left(Y_{i j}(1)-Y_{i j}(0)\right) \\
\text { PATE } & \equiv \mathbb{E}\left(Y_{i j}(1)-Y_{i j}(0)\right)
\end{aligned}
$$

- Random sampling of clusters and units

Merits and Limitations of CREs

- Interference between units within a cluster is allowed
- Assumption: No interference between units of different clusters
- Often easy to implement: Mexican health insurance experiment
- Opportunity to estimate the spill-over effects
- D. W. Nickerson. Spill-over effect of get-out-the-vote canvassing within household (APSR, 2008)
- Limitations:
(1) A large number of possible treatment assignments
(2) Loss of statistical power

Design-Based Inference

- For simplicity, assume equal cluster size, i.e., $n_{j}=n$ for all j
- The difference-in-means estimator:

$$
\hat{\tau} \equiv \frac{1}{m_{1}} \sum_{j=1}^{m} T_{j} \bar{Y}_{j}-\frac{1}{m_{0}} \sum_{j=1}^{m}\left(1-T_{j}\right) \bar{Y}_{j}
$$

where $\bar{Y}_{j} \equiv \sum_{i=1}^{n_{j}} Y_{i j} / n_{j}$

- Easy to show $\mathbb{E}(\hat{\tau} \mid \mathcal{O})=$ SATE and thus $\mathbb{E}(\hat{\tau})=$ PATE
- Exact population variance:

$$
\operatorname{Var}(\hat{\tau})=\frac{\operatorname{Var}\left(\overline{Y_{j}(1)}\right)}{m_{1}}+\frac{\operatorname{Var}\left(\overline{Y_{j}(0)}\right)}{m_{0}}
$$

- Intracluster correlation coefficient ρ_{t} :

$$
\operatorname{Var}\left(\overline{Y_{j}(t)}\right)=\frac{\sigma_{t}^{2}}{n}\left\{1+(n-1) \rho_{t}\right\} \leq \sigma_{t}^{2}
$$

Cluster Standard Error

- Cluster robust variance estimator:

$$
\operatorname{Var}(\widehat{(\hat{\alpha}, \hat{\beta})} \mid T)=\left(\sum_{j=1}^{m} X_{j}^{\top} X_{j}\right)^{-1}\left(\sum_{j=1}^{m} X_{j}^{\top} \hat{\epsilon}_{j} \hat{\epsilon}_{j}^{\top} X_{j}\right)\left(\sum_{j=1}^{m} X_{j}^{\top} X_{j}\right)^{-1}
$$

where in this case $X_{j}=\left[1 T_{j}\right]$ is an $n_{j} \times 2$ matrix and $\hat{\epsilon}_{j}=\left(\hat{\epsilon}_{1 j}, \ldots, \hat{\epsilon}_{n_{j}}\right)$ is a column vector of length n_{j}

- Design-based evaluation (assume $n_{j}=n$ for all j):

$$
\text { Finite Sample Bias }=-\left(\frac{\mathbb{V}\left(\overline{Y_{j}(1)}\right)}{m_{1}^{2}}+\frac{\mathbb{V}\left(\overline{Y_{j}(0)}\right)}{m_{0}^{2}}\right)
$$

- Bias vanishes asymptotically as $m \rightarrow \infty$ with n fixed
- Implication: cluster standard errors by the unit of treatment assignment

Example: Seguro Popular de Salud (SPS)

- Evaluation of the Mexican universal health insurance program
- Aim: "provide social protection in health to the 50 million uninsured Mexicans"
- A key goal: reduce out-of-pocket health expenditures
- Sounds obvious but not easy to achieve in developing countries
- Individuals must affiliate in order to receive SPS services
- 100 health clusters nonrandomly chosen for evaluation
- Matched-pair design: based on population, socio-demographics, poverty, education, health infrastructure etc.
- "Treatment clusters": encouragement for people to affiliate
- Data: aggregate characteristics, surveys of 32,000 individuals

Relative Efficiency of Matched-Pair Design (MPD)

- Compare with completely-randomized design
- Greater (positive) correlation within pair \rightarrow greater efficiency
- UATE: MPD is between 1.1 and 2.9 times more efficient
- PATE: MPD is between 1.8 and 38.3 times more efficient!

Methodological Challenges

- Even randomized experiments often require sophisticated statistical methods
- Deviation from the protocol:
(1) Spill-over, carry-over effects
(2) Noncompliance
(3) Missing data, measurement error
- Beyond the average treatment effect:
(1) Treatment effect heterogeneity
(2) Causal mechanisms
- Getting more out of randomized experiments:
(1) Generalizing experimental results
(2) Deriving individualized treatment rules

Challenges of Observational Studies

- Randomized experiments vs. Observational studies
- Tradeoff between internal and external validity
- Endogeneity: selection bias
- Generalizability: sample selection, Hawthorne effects, realism
- Statistical methods cannot replace good research design
- "Designing" observational studies
- Natural experiments (haphazard treatment assignment)
- Examples: birthdays, weather, close elections, arbitrary administrative rules and boundaries
- "Replicating" randomized experiments
- Key Questions:
(1) Where are the counterfactuals coming from?
(2) Is it a credible comparison?

A Close Look at Fixed Effects Regression

- Fixed effects models are a primary workhorse for causal inference
- Used for stratified experimental and observational data
- Also used to adjust for unobservables in observational studies:
- "Good instruments are hard to find ..., so we'd like to have other tools to deal with unobserved confounders. This chapter considers
... strategies that use data with a time or cohort dimension to control for unobserved but fixed omitted variables" (Angrist \& Pischke, Mostly Harmless Econometrics)
- "fixed effects regression can scarcely be faulted for being the bearer of bad tidings" (Green et al., Dirty Pool)
- Common claim: Fixed effects models are superior to matching estimators because the latter can only adjust for observables
- Question: What are the exact causal assumptions underlying fixed effects regression models?

Identification of the Average Treatment Effect

- Assumption 1: Overlap (i.e., no extrapolation)

$$
0<\operatorname{Pr}\left(T_{i}=1 \mid X_{i}=x\right)<1 \text { for any } x \in \mathcal{X}
$$

- Assumption 2: Ignorability (exogeneity, unconfoundedness, no omitted variable, selection on observables, etc.)

$$
\left\{Y_{i}(1), Y_{i}(0)\right\} \Perp T_{i} \mid X_{i}=x \text { for any } x \in \mathcal{X}
$$

- Conditional expectation function: $\mu(t, x)=\mathbb{E}\left(Y_{i}(t) \mid T_{i}=t, X_{i}=x\right)$
- Regression-based Estimator:

$$
\hat{\tau}=\frac{1}{n} \sum_{i=1}^{n}\left\{\hat{\mu}\left(1, X_{i}\right)-\hat{\mu}\left(0, X_{i}\right)\right\}
$$

- Delta method is pain, but simulation is easy (Zelig)

Matching and Regression in Cross-Section Settings

Units	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Treatment status	\mathbf{T}	\mathbf{T}	\mathbf{C}	\mathbf{C}	\mathbf{T}
Outcome	Y_{1}	Y_{2}	Y_{3}	Y_{4}	Y_{5}

- Estimating the Average Treatment Effect (ATE) via matching:

$$
\begin{aligned}
Y_{1} & -\frac{1}{2}\left(Y_{3}+Y_{4}\right) \\
Y_{2} & -\frac{1}{2}\left(Y_{3}+Y_{4}\right) \\
\frac{1}{3}\left(Y_{1}+Y_{2}+Y_{5}\right) & -Y_{3} \\
\frac{1}{3}\left(Y_{1}+Y_{2}+Y_{5}\right) & -Y_{4} \\
Y_{5} & -\frac{1}{2}\left(Y_{3}+Y_{4}\right)
\end{aligned}
$$

Matching Representation of Simple Regression

- Cross-section simple linear regression model:

$$
Y_{i}=\alpha+\beta X_{i}+\epsilon_{i}
$$

- Binary treatment: $X_{i} \in\{0,1\}$
- Equivalent matching estimator:

$$
\hat{\beta}=\frac{1}{N} \sum_{i=1}^{N}\left(\widehat{Y_{i}(1)}-\widehat{Y_{i}(0)}\right)
$$

where

$$
\begin{aligned}
& \widehat{Y_{i}(1)}=\left\{\begin{array}{cl}
Y_{i} & \text { if } X_{i}=1 \\
\frac{1}{\sum_{i^{\prime}=1}^{N} X_{i^{\prime}}} \sum_{i^{\prime}=1}^{N} X_{i^{\prime}} Y_{i^{\prime}} & \text { if } X_{i}=0
\end{array}\right. \\
& \widehat{Y_{i}(0)}=\left\{\begin{array}{cl}
\frac{\sum_{i^{\prime}=1}^{N}\left(1-X_{i^{\prime}}\right)}{\sum_{i^{\prime}=1}^{N}\left(1-X_{i^{\prime}}\right) Y_{i^{\prime}}} & \text { if } X_{i}=1 \\
Y_{i} & \text { if } X_{i}=0
\end{array}\right.
\end{aligned}
$$

- Treated units matched with the average of non-treated units

One-Way Fixed Effects Regression

- Simple (one-way) FE model:

$$
Y_{i t}=\alpha_{i}+\beta X_{i t}+\epsilon_{i t}
$$

- Commonly used by applied researchers:
- Stratified randomized experiments (Duflo et al. 2007)
- Stratification and matching in observational studies
- Panel data, both experimental and observational
- $\hat{\beta}_{F E}$ may be biased for the ATE even if $X_{i t}$ is exogenous within each unit
- It converges to the weighted average of conditional ATEs:

$$
\hat{\beta}_{F E} \xrightarrow{p} \frac{\mathbb{E}\left\{\mathrm{ATE}_{i} \sigma_{i}^{2}\right\}}{\mathbb{E}\left(\sigma_{i}^{2}\right)}
$$

where $\sigma_{i}^{2}=\sum_{t=1}^{T}\left(X_{i t}-\bar{X}_{i}\right)^{2} / T$

- How are counterfactual outcomes estimated under the FE model?
- Unit fixed effects \Longrightarrow within-unit comparison

Mismatches in One-Way Fixed Effects Model

Units

- T: treated observations
- C: control observations
- Circles: Proper matches
- Triangles: "Mismatches" \Longrightarrow attenuation bias

Matching Representation of Fixed Effects Regression

Proposition 1

$$
\begin{aligned}
& \hat{\beta}^{F E}=\frac{1}{K}\left\{\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=1}^{T}\left(\widehat{Y_{i t}(1)}-\widehat{Y_{i t}(0)}\right)\right\}, \\
& \widehat{Y_{i t}(x)}=\left\{\begin{array}{cl}
Y_{i t} & \text { if } X_{i t}=x \\
\frac{1}{T-1} \sum_{t^{\prime} \neq t} Y_{i t^{\prime}} & \text { if } X_{i t}=1-x \quad \text { for } \quad x=0,1
\end{array}\right. \\
& K=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=1}^{T}\left\{X_{i t} \cdot \frac{1}{T-1} \sum_{t^{\prime} \neq t}\left(1-X_{i t^{\prime}}\right)+\left(1-X_{i t}\right) \cdot \frac{1}{T-1} \sum_{t^{\prime} \neq t} x_{i t^{\prime}}\right\} .
\end{aligned}
$$

- K: average proportion of proper matches across all observations
- More mismatches \Longrightarrow larger adjustment
- Adjustment is required except very special cases
- "Fixes" attenuation bias but this adjustment is not sufficient
- Fixed effects estimator is a special case of matching estimators

Unadjusted Matching Estimator

Units

- Consistent if the treatment is exogenous within each unit
- Only equal to fixed effects estimator if heterogeneity in either treatment assignment or treatment effect is non-existent

Unadjusted Matching $=$ Weighted FE Estimator

Proposition 2

The unadjusted matching estimator

$$
\hat{\beta}^{M}=\frac{1}{N T} \sum_{i=1}^{N} \sum_{t=1}^{T}\left(\widehat{Y_{i t}(1)}-\widehat{Y_{i t}(0)}\right)
$$

where

$$
\widehat{Y_{i t}(1)}=\left\{\begin{array}{cl}
Y_{i t} & \text { if } X_{i t}=1 \\
\frac{\sum_{t^{\prime}=1}^{T} X_{i t^{\prime}} Y_{i t^{\prime}}}{\sum_{t^{\prime}=1}^{T} X_{i t^{\prime}}} & \text { if } X_{i t}=0
\end{array} \text { and } \widehat{Y_{i t}(0)}=\left\{\begin{array}{cl}
\frac{\sum_{t^{\prime}=1}^{T}\left(1-X_{i t^{\prime}}\right) Y_{i t^{\prime}}}{\sum_{t^{\prime}=1}^{T}\left(1-X_{i t^{\prime}}\right)} & \text { if } X_{i t}=1 \\
Y_{i t} & \text { if } X_{i t}=0
\end{array}\right.\right.
$$

is equivalent to the weighted fixed effects model

$$
\begin{aligned}
\left(\hat{\alpha}^{M}, \hat{\beta}^{M}\right) & =\underset{(\alpha, \beta)}{\operatorname{argmin}} \sum_{i=1}^{N} \sum_{t=1}^{T} W_{i t}\left(Y_{i t}-\alpha_{i}-\beta X_{i t}\right)^{2} \\
W_{i t} & \equiv\left\{\begin{array}{lll}
\frac{T}{\sum_{t^{\prime}=1}^{T} X_{i t^{\prime}}} & \text { if } & X_{i t}=1, \\
\sum_{t^{\prime}=1}^{T}\left(1-X_{i t^{\prime}}\right) & \text { if } & X_{i t}=0 .
\end{array}\right.
\end{aligned}
$$

Equal Weights

Treatment

Different Weights

Treatment

Weights

- Any within-unit matching estimator leads to weighted fixed effects regression with particular weights
- We derive regression weights given any matching estimator for various quantities (ATE, ATT, etc.)

First Difference $=$ Matching $=$ Weighted One-Way FE

- $\Delta Y_{i t}=\beta \Delta X_{i t}+\epsilon_{i t}$ where $\Delta Y_{i t}=Y_{i t}-Y_{i, t-1}, \Delta X_{i t}=X_{i t}-X_{i, t-1}$

Treatment

Mismatches in Two-Way FE Model

$$
Y_{i t}=\alpha_{i}+\gamma_{t}+\beta X_{i t}+\epsilon_{i t}
$$

Units

- Triangles: Two kinds of mismatches
- Same treatment status
- Neither same unit nor same time

Mismatches in Weighted Two-Way FE Model

Units

- Some mismatches can be eliminated
- You can NEVER eliminate them all

Cross Section Analysis $=$ Weighted Time FE Model

First Difference $=$ Weighted Unit FE Model

What about Difference-in-Differences (DiD)?

General DiD = Weighted Two-Way (Unit and Time) FE

- 2×2 : standard two-way fixed effects
- General setting: Multiple time periods, repeated treatments

Treatment
Weights

- Weights can be negative \Longrightarrow the method of moments estimator
- Fast computation is available

Effects of GATT Membership on International Trade

(1) Controversy

- Rose (2004): No effect of GATT membership on trade
- Tomz et al. (2007): Significant effect with non-member participants
(2) The central role of fixed effects models:
- Rose (2004): one-way (year) fixed effects for dyadic data
- Tomz et al. (2007): two-way (year and dyad) fixed effects
- Rose (2005): "I follow the profession in placing most confidence in the fixed effects estimators; I have no clear ranking between country-specific and country pair-specific effects."
- Tomz et al. (2007): "We, too, prefer FE estimates over OLS on both theoretical and statistical ground"

Data and Methods

- Data
- Data set from Tomz et al. (2007)
- Effect of GATT: 1948 - 1994
- 162 countries, and 196,207 (dyad-year) observations
- Year fixed effects model: standard and weighted

$$
\ln Y_{i t}=\alpha_{t}+\beta X_{i t}+\delta^{\top} Z_{i t}+\epsilon_{i t}
$$

- $X_{i t}$: Formal membership/Participant (1) Both vs. One, (2) One vs. None, (3) Both vs. One/None
- $Z_{i t}$: 15 dyad-varying covariates (e.g., log product GDP)
- Year fixed effects: standard, weighted, and first difference
- Two-way fixed effects: standard and difference-in-differences

Empirical Results

(a) Formal Membership

(b) Participants

Matching as Nonparametric Preprocessing

- Assume exogeneity holds: matching does NOT solve endogeneity
- Need to model $\mathbb{E}\left(Y_{i} \mid T_{i}, X_{i}\right)$
- Parametric regression - functional-form/distributional assumptions \Longrightarrow model dependence
- Non-parametric regression \Longrightarrow curse of dimensionality
- Preprocess the data so that treatment and control groups are similar to each other w.r.t. the observed pre-treatment covariates
- Goal of matching: achieve balance $=$ independence between T and X
- "Replicate" randomized treatment w.r.t. observed covaraites
- Reduced model dependence: minimal role of statistical modeling

Sensitivity Analysis

- Consider a simple pair-matching of treated and control units
- Assumption: treatment assignment is "random"
- Difference-in-means estimator
- Question: How large a departure from the key (untestable) assumption must occur for the conclusions to no longer hold?
- Rosenbaum's sensitivity analysis: for any pair j,

$$
\frac{1}{\Gamma} \leq \frac{\operatorname{Pr}\left(T_{1 j}=1\right) / \operatorname{Pr}\left(T_{1 j}=0\right)}{\operatorname{Pr}\left(T_{2 j}=1\right) / \operatorname{Pr}\left(T_{2 j}=0\right)} \leq \Gamma
$$

- Under ignorability, $\Gamma=1$ for all j
- How do the results change as you increase Γ ?
- Limitations of sensitivity analysis
- Further Reading: P. Rosenbaum. Observational Studies.

The Role of Propensity Score

- The probability of receiving the treatment:

$$
\pi\left(X_{i}\right) \equiv \operatorname{Pr}\left(T_{i}=1 \mid X_{i}\right)
$$

- The balancing property:

$$
T_{i} \quad \Perp \quad X_{i} \mid \pi\left(X_{i}\right)
$$

- Exogeneity given the propensity score (under exogeneity given covariates):

$$
\left(Y_{i}(1), Y_{i}(0)\right) \Perp \quad T_{i} \mid \pi\left(X_{i}\right)
$$

- Dimension reduction
- But, true propensity score is unknown: propensity score tautology (more later)

Classical Matching Techniques

- Exact matching
- Mahalanobis distance matching: $\sqrt{\left(X_{i}-X_{j}\right)^{\top} \tilde{\Sigma}^{-1}\left(X_{i}-X_{j}\right)}$
- Propensity score matching
- One-to-one, one-to-many, and subclassification
- Matching with caliper
- Which matching method to choose?
- Whatever gives you the "best" balance!
- Importance of substantive knowledge: propensity score matching with exact matching on key confounders
- Further Reading: Rubin (2006). Matched Sampling for Causal Effects (Cambridge UP)

How to Check Balance

- Success of matching method depends on the resulting balance
- How should one assess the balance of matched data?
- Ideally, compare the joint distribution of all covariates for the matched treatment and control groups
- In practice, this is impossible when X is high-dimensional
- Check various lower-dimensional summaries; (standardized) mean difference, variance ratio, empirical CDF, etc.
- Frequent use of balance test
- t test for difference in means for each variable of X
- other test statistics; e.g., χ^{2}, F, Kolmogorov-Smirnov tests
- statistically insignificant test statistics as a justification for the adequacy of the chosen matching method and/or a stopping rule for maximizing balance

An Illustration of Balance Test Fallacy

Problems with Hypothesis Tests as Stopping Rules

- Balance test is a function of both balance and statistical power
- The more observations dropped, the less power the tests have
- t-test is affected by factors other than balance,

$$
\frac{\sqrt{n_{m}}\left(\bar{X}_{m t}-\bar{X}_{m c}\right)}{\sqrt{\frac{s_{m t}^{2}}{r_{m}}+\frac{s_{m c}^{2}}{1-r_{m}}}}
$$

- $\bar{X}_{m t}$ and $\bar{X}_{m c}$ are the sample means
- $s_{m t}^{2}$ and $s_{m c}^{2}$ are the sample variances
- n_{m} is the total number of remaining observations
- r_{m} is the ratio of remaining treated units to the total number of remaining observations

Advances in Matching Methods

- The main problem of matching: balance checking
- Skip balance checking all together
- Specify a balance metric and optimize it
- Optimal matching: minimize sum of distances
- Genetic matching: maximize minimum p-value
- Coarsened exact matching: exact match on binned covariates
- SVM matching: find the largest, balanced subset

Inverse Propensity Score Weighting

- Matching is inefficient because it throws away data
- Weighting by inverse propensity score

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\frac{T_{i} Y_{i}}{\hat{\pi}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) Y_{i}}{1-\hat{\pi}\left(X_{i}\right)}\right)
$$

- An improved weighting scheme:

$$
\frac{\sum_{i=1}^{n}\left\{T_{i} Y_{i} / \hat{\pi}\left(X_{i}\right)\right\}}{\sum_{i=1}^{n}\left\{T_{i} / \hat{\pi}\left(X_{i}\right)\right\}}-\frac{\sum_{i=1}^{n}\left\{\left(1-T_{i}\right) Y_{i} /\left(1-\hat{\pi}\left(X_{i}\right)\right)\right\}}{\sum_{i=1}^{n}\left\{\left(1-T_{i}\right) /\left(1-\hat{\pi}\left(X_{i}\right)\right)\right\}}
$$

- Unstable when some weights are extremely small

Efficient Doubly-Robust Estimators

- The estimator by Robins et al. :

$$
\begin{aligned}
\hat{\tau}_{D R} \equiv & \left\{\frac{1}{n} \sum_{i=1}^{n} \hat{\mu}\left(1, X_{i}\right)+\frac{1}{n} \sum_{i=1}^{n} \frac{T_{i}\left(Y_{i}-\hat{\mu}\left(1, X_{i}\right)\right)}{\hat{\pi}\left(X_{i}\right)}\right\} \\
& -\left\{\frac{1}{n} \sum_{i=1}^{n} \hat{\mu}\left(0, X_{i}\right)+\frac{1}{n} \sum_{i=1}^{n} \frac{\left(1-T_{i}\right)\left(Y_{i}-\hat{\mu}\left(0, X_{i}\right)\right)}{1-\hat{\pi}\left(X_{i}\right)}\right\}
\end{aligned}
$$

- Consistent if either the propensity score model or the outcome model is correct
- (Semiparametrically) Efficient
- Further Reading: Lunceford and Davidian (2004, Stat. in Med.)

Propensity Score Tautology

- Propensity score is unknown
- Dimension reduction is purely theoretical: must model T_{i} given X_{i}
- Diagnostics: covariate balance checking
- In practice, adhoc specification searches are conducted
- Model misspecification is always possible
- Theory (Rubin et al.): ellipsoidal covariate distributions \Longrightarrow equal percent bias reduction
- Skewed covariates are common in applied settings
- Propensity score methods can be sensitive to misspecification

Kang and Schafer (2007, Statistical Science)

- Simulation study: the deteriorating performance of propensity score weighting methods when the model is misspecified
- Setup:
- 4 covariates X_{i}^{*} : all are i.i.d. standard normal
- Outcome model: linear model
- Propensity score model: logistic model with linear predictors
- Misspecification induced by measurement error:
- $X_{i 1}=\exp \left(X_{i 1}^{*} / 2\right)$
- $X_{i 2}=X_{i 2}^{*} /\left(1+\exp \left(X_{1 i}^{*}\right)+10\right)$
- $X_{i 3}=\left(X_{i 1}^{*} X_{i 3}^{*} / 25+0.6\right)^{3}$
- $X_{i 4}=\left(X_{i 1}^{*}+X_{i 4}^{*}+20\right)^{2}$
- Weighting estimators to be evaluated:
(1) Horvitz-Thompson
(2) Inverse-probability weighting with normalized weights
(3) Weighted least squares regression
(4) Doubly-robust least squares regression

Weighting Estimators Do Fine If the Model is Correct

Bias

Sample size	Estimator	GLM	True	GLM	True
(1) Both models correct					
	HT	-0.01	0.68	13.07	23.72
$n=200$	IPW	-0.09	-0.11	4.01	4.90
	WLS	0.03	0.03	2.57	2.57
	DR	0.03	0.03	2.57	2.57
1000	HT	-0.03	0.29	4.86	10.52
	IPW	-0.02	-0.01	1.73	2.25
	WLS	-0.00	-0.00	1.14	1.14
	DR	-0.00	-0.00	1.14	1.14

(2) Propensity score model correct

	HT	-0.32	-0.17	12.49	23.49
$n=200$	IPW	-0.27	-0.35	3.94	4.90
	WLS	-0.07	-0.07	2.59	2.59
	DR	-0.07	-0.07	2.59	2.59
$n=1000$	HT	0.03	0.01	4.93	10.62
	IPW	-0.02	-0.04	1.76	2.26
	WLS	-0.01	-0.01	1.14	1.14
	DR	-0.01	-0.01	1.14	1.14

Weighting Estimators Are Sensitive to Misspecification

Bias

RMSE

Sample size	Estimator	GLM	True	GLM	True
(3) Outcome model correct					
	HT	24.72	0.25	141.09	23.76
$n=200$	IPW	2.69	-0.17	10.51	4.89
	WLS	-1.95	0.49	3.86	3.31
	DR	0.01	0.01	2.62	2.56
1000	HT	69.13	-0.10	1329.31	10.36
	IPW	6.20	-0.04	13.74	2.23
	WLS	-2.67	0.18	3.08	1.48
	DR	0.05	0.02	4.86	1.15
(4) Both models incorrect					
	HT	25.88	-0.14	186.53	23.65
$n=200$	IPW	2.58	-0.24	10.32	4.92
	WLS	-1.96	0.47	3.86	3.31
	DR	-5.69	0.33	39.54	3.69
	HT	60.60	0.05	1387.53	10.52
$n=1000$	IPW	6.18	-0.04	13.40	2.24
	WLS	-2.68	0.17	3.09	1.47
	DR	-20.20	0.07	615.05	1.75

Smith and Todd (2005, J. of Econometrics)

- LaLonde (1986; Amer. Econ. Rev.):
- Randomized evaluation of a job training program
- Replace experimental control group with another non-treated group
- Current Population Survey and Panel Study for Income Dynamics
- Many evaluation estimators didn't recover experimental benchmark
- Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):
- Apply propensity score matching
- Estimates are close to the experimental benchmark
- Smith and Todd (2005):
- Dehejia \& Wahba (DW)'s results are sensitive to model specification
- They are also sensitive to the selection of comparison sample

Propensity Score Matching Fails Miserably

- One of the most difficult scenarios identified by Smith and Todd:
- LaLonde experimental sample rather than DW sample
- Experimental estimate: $\$ 886$ (s.e. $=488$)
- PSID sample rather than CPS sample
- Evaluation bias:
- Conditional probability of being in the experimental sample
- Comparison between experimental control group and PSID sample
- "True" estimate $=0$
- Logistic regression for propensity score
- One-to-one nearest neighbor matching with replacement

Propensity score model	Estimates
Linear	-835
	(886)
Quadratic	-1620
	(1003)
Smith and Todd (2005)	-1910
	(1004)

Covariate Balancing Propensity Score

- Recall the dual characteristics of propensity score
(1) Conditional probability of treatment assignment
(2) Covariate balancing score
- Implied moment conditions:
(1) Score equation:

$$
\mathbb{E}\left\{\frac{T_{i} \pi_{\beta}^{\prime}\left(X_{i}\right)}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) \pi_{\beta}^{\prime}\left(X_{i}\right)}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0
$$

(2) Balancing condition:

$$
\mathbb{E}\left\{\frac{T_{i} \widetilde{X}_{i}}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) \widetilde{X}_{i}}{1-\pi_{\beta}\left(X_{i}\right)}\right\}=0
$$

where $\widetilde{X}_{i}=f\left(X_{i}\right)$ is any vector-valued function

Generalized Method of Moments (GMM) Framework

- Over-identification: more moment conditions than parameters
- GMM (Hansen 1982):

$$
\hat{\beta}_{\mathrm{GMM}}=\underset{\beta \in \Theta}{\operatorname{argmin}} \bar{g}_{\beta}(T, X)^{\top} \Sigma_{\beta}(T, X)^{-1} \bar{g}_{\beta}(T, X)
$$

where

$$
\bar{g}_{\beta}(T, X)=\frac{1}{N} \sum_{i=1}^{N} \underbrace{\binom{\frac{T_{i} \pi_{\beta}^{\prime}\left(X_{i}\right)}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-T_{i}\right) \pi_{\beta}^{\prime}\left(X_{i}\right)}{1-\pi_{\beta}\left(X_{i}\right)}}{\frac{T_{i} X_{i}}{\pi_{\beta}\left(X_{i}\right)}-\frac{\left(1-\tilde{T}_{\beta}\right)}{1-\tilde{X}_{\beta}\left(X_{i}\right)}}}_{g_{\beta}\left(T_{i}, X_{i}\right)}
$$

- "Continuous updating" GMM estimator with the following Σ :

$$
\Sigma_{\beta}(T, X)=\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left(g_{\beta}\left(T_{i}, X_{i}\right) g_{\beta}\left(T_{i}, X_{i}\right)^{\top} \mid X_{i}\right)
$$

- Newton-type optimization algorithm with MLE as starting values

Revisiting Kang and Schafer (2007)

Bias

Sample size Estimator GLM Balance CBPS True \quad GLM Balance CBPS True (1) Both models correct

	HT	-0.01	2.02	0.73	0.68	13.07	4.65	4.04	23.72
$n=200$	IPW	-0.09	0.05	-0.09	-0.11	4.01	3.23	3.23	4.90
	WLS	0.03	0.03	0.03	0.03	2.57	2.57	2.57	2.57
	DR	0.03	0.03	0.03	0.03	2.57	2.57	2.57	2.57
	HT	-0.03	0.39	0.15	0.29	4.86	1.77	1.80	10.52
$n=1000$	IPW	-0.02	0.00	-0.03	-0.01	1.73	1.44	1.45	2.25
	WLS	-0.00	-0.00	-0.00	-0.00	1.14	1.14	1.14	1.14
	DR	-0.00	-0.00	-0.00	-0.00	1.14	1.14	1.14	1.14
(2) Propensity	score	model correct							
	HT	-0.32	1.88	0.55	-0.17	12.49	4.67	4.06	23.49
$n=200$	IPW	-0.27	-0.12	-0.26	-0.35	3.94	3.26	3.27	4.90
	WLS	-0.07	-0.07	-0.07	-0.07	2.59	2.59	2.59	2.59
	DR	-0.07	-0.07	-0.07	-0.07	2.59	2.59	2.59	2.59
	HT	0.03	0.38	0.15	0.01	4.93	1.75	1.79	10.62
$n=1000$	IPW	-0.02	-0.00	-0.03	-0.04	1.76	1.45	1.46	2.26
	WLS	-0.01	-0.01	-0.01	-0.01	1.14	1.14	1.14	1.14
	DR	-0.01	-0.01	-0.01	-0.01	1.14	1.14	1.14	1.14

CBPS Makes Weighting Methods Work Better

Sample size Estimator		Bias				RMSE			
		GLM	Balance	CBPS	True	GLM	Balance	CBPS	True
(3) Outcome model correct									
$n=200$	HT	24.72	0.33	-0.47	0.25	141.09	4.55	3.70	23.76
	IPW	2.69	-0.71	-0.80	-0.17	10.51	3.50	3.51	4.89
	WLS	-1.95	-2.01	-1.99	0.49	3.86	3.88	3.88	3.31
	DR	0.01	0.01	0.01	0.01	2.62	2.56	2.56	2.56
$n=1000$	HT	69.13	-2.14	-1.55	-0.10	1329.31	3.12	2.63	10.36
	IPW	6.20	-0.87	-0.73	-0.04	13.74	1.87	1.80	2.23
	WLS	-2.67	-2.68	-2.69	0.18	3.08	3.13	3.14	1.48
	DR	0.05	0.02	0.02	0.02	4.86	1.16	1.16	1.15
(4) Both models incorrect									
$n=200$	HT	25.88	0.39	-0.41	-0.14	186.53	4.64	3.69	23.65
	IPW	2.58	-0.71	-0.80	-0.24	10.32	3.49	3.50	4.92
	WLS	-1.96	-2.01	-2.00	0.47	3.86	3.88	3.88	3.31
	DR	-5.69	-2.20	-2.18	0.33	39.54	4.22	4.23	3.69
$n=1000$	HT	60.60	-2.16	-1.56	0.05	1387.53	3.11	2.62	10.52
	IPW	6.18	-0.87	-0.72	-0.04	13.40	1.86	1.80	2.24
	WLS	-2.68	-2.69	-2.70	0.17	3.09	3.14	3.15	1.47
	DR	-20.20	-2.89	-2.94	0.07	615.05	3.47	3.53	1.75

CBPS Sacrifices Likelihood for Better Balance

Revisiting Smith and Todd (2005)

- Evaluation bias: "true" bias $=0$
- CBPS improves propensity score matching across specifications and matching methods
- However, specification test rejects the null

	1-to-1		Nearest Neighbor	Optimal 1-to- N Nearest Neighbor		
Specification	GLM	Balance	CBPS	GLM	Balance	CBPS
Linear	-835	-559	-302	-885	-257	-38
	(886)	(898)	(873)	(435)	(492)	(488)
Quadratic	-1620	-967	-1040	-1270	-306	-140
	(1003)	(882)	(831)	(406)	(407)	(392)
Smith \& Todd	-1910	-1040	-1313	-1029	-672	-32
	(1004)	(860)	(800)	(413)	(387)	(397)

Standardized Covariate Imbalance

- Covariate imbalance in the (Optimal 1-to-N) matched sample
- Standardized difference-in-means

	Linear				Quadratic			Smith \& Todd		
	GLM	Balance	CBPS	GLM	Balance	CBPS	GLM	Balance	CBPS	
Age	-0.060	-0.035	-0.063	-0.060	-0.035	-0.063	-0.031	0.035	-0.013	
Education	-0.208	-0.142	-0.126	-0.208	-0.142	-0.126	-0.262	-0.168	-0.108	
Black	-0.087	0.005	-0.022	-0.087	0.005	-0.022	-0.082	-0.032	-0.093	
Married	0.145	0.028	0.037	0.145	0.028	0.037	0.171	0.031	0.029	
High school	0.133	0.089	0.174	0.133	0.089	0.174	0.189	0.095	0.160	
74 earnings	-0.090	0.025	0.039	-0.090	0.025	0.039	-0.079	0.011	0.019	
75 earnings	-0.118	0.014	0.043	-0.118	0.014	0.043	-0.120	-0.010	0.041	
Hispanic	0.104	-0.013	0.000	0.104	-0.013	0.000	0.061	0.034	0.102	
74 employed	0.083	0.051	-0.017	0.083	0.051	-0.017	0.059	0.068	0.022	
75 employed	0.073	-0.023	-0.036	0.073	-0.023	-0.036	0.099	-0.027	-0.098	
Log-likelihood	-326	-342	-345	-293	-307	-297	-295	-231	-296	
Imbalance	0.507	0.264	0.312	0.544	0.304	0.300	0.515	0.359	0.383	

Extensions to Other Causal Inference Settings

- Propensity score methods are widely applicable
- This means that CBPS is also widely applicable
- Potential extensions:
(1) Non-binary treatment regimes
(2) Causal inference with longitudinal data
(3) Generalizing experimental estimates
(4) Generalizing instrumental variable estimates
- All of these are situations where balance checking is difficult

Concluding Remarks

- Matching methods do:
- make causal assumptions transparent by identifying counterfactuals
- make regression models robust by reducing model dependence
- Matching methods cannot solve endogeneity
- Only good research design can overcome endogeneity
- Recent advances in matching methods
- directly optimize balance
- the same idea applied to propensity score
- Next methodological challenges: panel data
- Fixed effects regression assumes no carry-over effect
- They do not model dynamic treatment regimes

Coping with Endogeneity in Observational Studies

- Selection bias in observational studies
- Two research design strategies:
(1) Find a plausibly exogenous treatment
(2) Find a plausibly exogenous instrument
- A valid instrument satisfies the following conditions
(1) Exogenously assigned - no confounding
(2) It monotonically affects treatment
(3) It affects outcome only through treatment - no direct effect
- Challenge: plausibly exogenous instruments with no direct effect tends to be weak

Partial Compliance in Randomized Experiments

- Unable to force all experimental subjects to take the (randomly) assigned treatment/control
- Intention-to-Treat (ITT) effect \neq treatment effect
- Selection bias: self-selection into the treatment/control groups
- Political information bias: effects of campaign on voting behavior
- Ability bias: effects of education on wages
- Healthy-user bias: effects of exercises on blood pressure
- Encouragement design: randomize the encouragement to receive the treatment rather than the receipt of the treatment itself

Potential Outcomes Notation

- Randomized encouragement: $Z_{i} \in\{0,1\}$
- Potential treatment variables: $\left(T_{i}(1), T_{i}(0)\right)$
(1) $T_{i}(z)=1$: would receive the treatment if $Z_{i}=z$
(2) $T_{i}(z)=0$: would not receive the treatment if $Z_{i}=z$
- Observed treatment receipt indicator: $T_{i}=T_{i}\left(Z_{i}\right)$
- Observed and potential outcomes: $Y_{i}=Y_{i}\left(Z_{i}, T_{i}\left(Z_{i}\right)\right)$
- Can be written as $Y_{i}=Y_{i}\left(Z_{i}\right)$
- No interference assumption for $T_{i}\left(Z_{i}\right)$ and $Y_{i}\left(Z_{i}, T_{i}\right)$
- Randomization of encouragement:

$$
\left(Y_{i}(1), Y_{i}(0), T_{i}(1), T_{i}(0)\right) \Perp Z_{i}
$$

- But $\left(Y_{i}(1), Y_{i}(0)\right) \not \Perp T_{i} \mid Z_{i}=z$, i.e., selection bias

Principal Stratification Framework

- Imbens and Angrist (1994, Econometrica); Angrist, Imbens, and Rubin (1996, JASA)
- Four principal strata (latent types):
- compliers $\left(T_{i}(1), T_{i}(0)\right)=(1,0)$,
- non-compliers $\left\{\begin{array}{cc}\text { always - takers } & \left(T_{i}(1), T_{i}(0)\right)=(1,1), \\ \text { never - takers } & \left(T_{i}(1), T_{i}(0)\right)=(0,0), \\ \text { defiers } & \left(T_{i}(1), T_{i}(0)\right)=(0,1)\end{array}\right.$
- Observed and principal strata:

$Z_{i}=1$	$Z_{i}=0$	
$T_{i}=1$	Complier/Always-taker	Defier/Always-taker
	Defier/Never-taker	Complier/Never-taker

Instrumental Variables and Causality

- Randomized encouragement as an instrument for the treatment
- Two additional assumptions
(1) Monotonicity: No defiers

$$
T_{i}(1) \geq T_{i}(0) \quad \text { for all } i
$$

(2) Exclusion restriction: Instrument (encouragement) affects outcome only through treatment

$$
Y_{i}(1, t)=Y_{i}(0, t) \quad \text { for } t=0,1
$$

Zero ITT effect for always-takers and never-takers

- ITT effect decomposition:

$$
\begin{aligned}
\mathrm{ITT}= & \mathrm{ITT}_{c} \times \operatorname{Pr}(\text { compliers })+\mathrm{ITT}_{a} \times \operatorname{Pr}(\text { always }- \text { takers }) \\
& +\mathrm{ITT}_{n} \times \operatorname{Pr}(\text { never }- \text { takers }) \\
= & \mathrm{ITT}_{c} \operatorname{Pr}(\text { compliers })
\end{aligned}
$$

IV Estimand and Interpretation

- IV estimand:

$$
\begin{aligned}
\mathrm{ITT}_{c} & =\frac{\text { ITT }}{\operatorname{Pr}(\text { compliers })} \\
& =\frac{\mathbb{E}\left(Y_{i} \mid Z_{i}=1\right)-\mathbb{E}\left(Y_{i} \mid Z_{i}=0\right)}{\mathbb{E}\left(T_{i} \mid Z_{i}=1\right)-\mathbb{E}\left(T_{i} \mid Z_{i}=0\right)} \\
& =\frac{\operatorname{Cov}\left(Y_{i}, Z_{i}\right)}{\operatorname{Cov}\left(T_{i}, Z_{i}\right)}
\end{aligned}
$$

- ITT $_{c}=$ Complier Average Treatment Effect (CATE)
- Local Average Treatment Effect (LATE)
- CATE \neq ATE unless ATE for noncompliers equals CATE
- Different encouragement (instrument) yields different compliers
- Debate among Deaton, Heckman, and Imbens in J. of Econ. Lit.

Violation of IV Assumptions

- Violation of exclusion restriction:

$$
\text { Large sample bias }=\mathrm{ITT}_{\text {noncomplier }} \frac{\operatorname{Pr}(\text { noncomplier })}{\operatorname{Pr}(\text { complier })}
$$

- Weak encouragement (instruments)
- Direct effects of encouragement; failure of randomization, alternative causal paths
- Violation of monotonicity:

$$
\text { Large sample bias }=\frac{\left\{\mathrm{CATE}+\mathrm{ITT}_{\text {defier }}\right\} \operatorname{Pr}(\text { defier })}{\operatorname{Pr}(\text { complier })-\operatorname{Pr}(\text { defier })}
$$

- Proportion of defiers
- Heterogeneity of causal effects

An Example: Testing Habitual Voting

- Gerber et al. (2003) AJPS
- Randomized encouragement to vote in an election
- Treatment: turnout in the election
- Outcome: turnout in the next election
- Monotonicity: Being contacted by a canvasser would never discourage anyone from voting
- Exclusion restriction: being contacted by a canvasser in this election has no effect on turnout in the next election other than through turnout in this election
- CATE: Habitual voting for those who would vote if and only if they are contacted by a canvasser in this election

Multi-valued Treatment

- Angrist and Imbens (1995, JASA)
- Two stage least squares regression:

$$
\begin{aligned}
& T_{i}=\alpha_{2}+\beta_{2} Z_{i}+\eta_{i} \\
& Y_{i}=\alpha_{3}+\gamma \boldsymbol{T}_{i}+\epsilon_{i}
\end{aligned}
$$

- Binary encouragement and binary treatment,
- $\hat{\gamma}=\widehat{\text { CATE }}$ (no covariate)
- $\hat{\gamma} \xrightarrow{P}$ CATE (with covariates)
- Binary encouragement multi-valued treatment
- Monotonicity: $T_{i}(1) \geq T_{i}(0)$
- Exclusion restriction: $Y_{i}(1, t)=Y_{i}(0, t)$ for each $t=0,1, \ldots, K$
- Estimator

$$
\begin{aligned}
\hat{\gamma}_{\text {TSLS }} & \xrightarrow{P} \frac{\operatorname{Cov}\left(Y_{i}, Z_{i}\right)}{\operatorname{Cov}\left(T_{i}, Z_{i}\right)}=\frac{\mathbb{E}\left(Y_{i}(1)-Y_{i}(0)\right)}{\mathbb{E}\left(T_{i}(1)-T_{i}(0)\right)} \\
& =\sum_{k=0}^{K} \sum_{j=k+1}^{K} w_{j k} \mathbb{E}\left(\left.\frac{Y_{i}(1)-Y_{i}(0)}{j-k} \right\rvert\, T_{i}(1)=j, T_{i}(0)=k\right)
\end{aligned}
$$

where $w_{j k}$ is the weight, which sums up to one, defined as,

$$
w_{j k}=\frac{(j-k) \operatorname{Pr}\left(T_{i}(1)=j, T_{i}(0)=k\right)}{\sum_{k^{\prime}=0}^{K} \sum_{j^{\prime}=k^{\prime}+1}^{K}\left(j^{\prime}-k^{\prime}\right) \operatorname{Pr}\left(T_{i}(1)=j^{\prime}, T_{i}(0)=k^{\prime}\right)} .
$$

- Easy interpretation under the constant additive effect assumption for every complier type
- Assume encouragement induces at most only one additional dose
- Then, $w_{k}=\operatorname{Pr}\left(T_{i}(1)=k, T_{i}(0)=k-1\right)$

Partial Identification of the ATE

- Balke and Pearl (1997, JASA)
- Randomized binary encouragement, Z_{i}
- Binary treatment, $T_{i}=T_{i}\left(Z_{i}\right)$
- Suppose exclusion restriction holds
- Binary outcome, $Y_{i}=Y_{i}\left(T_{i}, Z_{i}\right)=Y_{i}^{*}\left(T_{i}\right)$
- 16 Latent types defined by $\left(Y_{i}(1), Y_{i}(0), T_{i}(1), T_{i}(0)\right)$
$q\left(y_{1}, y_{0}, t_{1}, t_{0}\right) \equiv \operatorname{Pr}\left(Y_{i}^{*}(1)=y_{1}, Y_{i}^{*}(0)=y_{0}, T_{i}(1)=t_{1}, T_{i}(0)=t_{0}\right)$
- ATE

$$
=\sum_{y_{0}} \sum_{t_{1}} \sum_{t_{0}} q\left(1, y_{i}^{*}(1)-Y_{i}^{*}(0)\right)
$$

Derivation of Sharp Bounds

- Data generating mechanism implies

$$
\begin{array}{r}
\operatorname{Pr}\left(Y_{i}=y, T_{i}=1 \mid Z_{i}=1\right)=\sum_{y_{0}} \sum_{t_{0}} q\left(y, y_{0}, 1, t_{0}\right) \\
\operatorname{Pr}\left(Y_{i}=y, T_{i}=0 \mid Z_{i}=1\right)=\sum_{y_{1}} \sum_{t_{0}} q\left(y_{1}, y, 0, t_{0}\right) \\
\operatorname{Pr}\left(Y_{i}=y, T_{i}=1 \mid Z_{i}=0\right)=\sum_{y_{0}} \sum_{t_{1}} q\left(y, y_{0}, t_{1}, 1\right) \\
\operatorname{Pr}\left(Y_{i}=y, T_{i}=0 \mid Z_{i}=0\right)=\sum_{y_{1}} \sum_{t_{1}} q\left(y_{1}, y, t_{1}, 0\right) .
\end{array}
$$

- Monotonicity (optional): $q\left(y_{1}, y_{0}, 0,1\right)=0$
- Obtain sharp bounds via linear programming algorithms
- Bounds are sometimes informative

Fuzzy Regression Discontinuity Design

- Sharp regression discontinuity design: $T_{i}=\mathbf{1}\left\{X_{i} \geq c\right\}$
- What happens if we have noncompliance?
- Forcing variable as an instrument: $Z_{i}=\mathbf{1}\left\{X_{i} \geq c\right\}$
- Potential outcomes: $T_{i}(z)$ and $Y_{i}(z, t)$
- Monotonicity: $T_{i}(1) \geq T_{i}(0)$
- Exclusion restriction: $Y_{i}(0, t)=Y_{i}(1, t)$
- $\mathbb{E}\left(T_{i}(z) \mid X_{i}=x\right)$ and $\mathbb{E}\left(Y_{i}\left(z, T_{i}(z)\right) \mid X_{i}=x\right)$ are continuous in x
- Estimand: $\mathbb{E}\left(Y_{i}\left(1, T_{i}(1)\right)-Y_{i}\left(0, T_{i}(0)\right) \mid\right.$ Complier, $\left.X_{i}=c\right)$
- Estimator:

$$
\frac{\lim _{x \downarrow c} \mathbb{E}\left(Y_{i} \mid X_{i}=x\right)-\lim _{x \uparrow c} \mathbb{E}\left(Y_{i} \mid X_{i}=x\right)}{\lim _{x \downarrow c} \mathbb{E}\left(T_{i} \mid X_{i}=x\right)-\lim _{x \uparrow c} \mathbb{E}\left(T_{i} \mid X_{i}=x\right)}
$$

- Disadvantage: external validity

An Example: Class Size Effect (Angrist and Lavy)

- Effect of class-size on student test scores
- Maimonides' Rule: Maximum $\underset{\text { a. Fitth Grade }}{\text { class }}$ size $=40$

Concluding Remarks

- Instrumental variables in randomized experiments: dealing with partial compliance
- Additional (untestable) assumptions are required
(1) partial identification
(2) sensitivity analysis
- ITT vs. CATE
- Instrumental variables in observational studies: dealing with selection bias
- Validity of instrumental variables requires rigorous justification
- Tradeoff between internal and external validity

