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Introduction

What is “Identification”?

Inference: Learn about what you do not observe (parameters)
from what you do observe (data)

Identification: How much can we learn about parameters from
infinite amount of data?

Ambiguity vs. Uncertainty

Identification assumptions vs. Statistical assumptions

Point identification vs. Partial identification

FURTHER READING: C. F. Manski. (2007). Identification for
Prediction and Decision. Harvard University Press.
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Introduction

What is “Causal Inference”?

Learning about counterfactuals from factuals

Potential outcomes framework (Neyman-Holland-Rubin)
Units: i = 1, . . . ,n
Data: Yi (outcome), Ti (treatment), Xi (pre-treatment covariates)
Potential outcomes: Yi (t) where Yi = Yi (Ti )

Voters Contact Turnout Age Gender
i Ti Yi (1) Yi (0) X1i X2i

1 1 1 ? 20 M
2 0 ? 0 55 F
3 0 ? 1 40 M
...

...
...

...
...

...
n 1 0 ? 62 F

(Unit-level) Causal effect: τi = Yi (1)− Yi (0)
Average causal effects: 1

n

∑n
i=1 τi and E(τi )

Causal inference as a missing data problem
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Introduction

The Key Assumption

No interference between units:

Yi(T1,T2, . . . ,Tn) = Yi(Ti)

Stable Unit Treatment Value Assumption (SUTVA)
Potential violations: spill-over effects, carry-over effects, contagion

Potential outcomes are thought to be fixed for each individual
J-valued treatment −→ J potential outcomes for each unit
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Introduction

Causal Effects of Immutable Characteristics

“No causation without manipulation” (Holland, 1986 JASA)
Immutable characteristics; gender, race, age, etc.
What does the causal effect of gender mean?

Causal effect of a female politician on policy outcomes
(Chattopadhyay and Duflo, 2004 QJE)
Causal effect of a discussion leader with certain preferences on
deliberation outcomes (Humphreyes et al. 2006 WP)
Causal effect of a job applicant’s gender/race on call-back rates
(Bertrand and Mullainathan, 2004 AER)
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Randomized Experiments Classical Randomized Experiments

Classical Randomized Experiments

Units: i = 1, . . . ,n
Treatment: Ti ∈ {0,1}
Outcome: Yi = Yi(Ti)

Complete randomization of the treatment assignment
Exactly n1 units receive the treatment
n0 = n − n1 units are assigned to the control group

Assumption: for all i = 1, . . . ,n,
∑n

i=1 Ti = n1 and

(Yi(1),Yi(0)) ⊥⊥ Ti , Pr(Ti = 1) =
n1

n
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Randomized Experiments Classical Randomized Experiments

Estimation of Average Treatment Effects

Key idea (Neyman 1923): Randomness comes from treatment
assignment (plus sampling for PATE) alone
Design-based (randomization-based) rather than model-based
Statistical properties of τ̂ based on design features
Another important idea (skipped): Fisher’s permutation inference

Estimand = SATE or PATE
Estimator = Difference-in-means:

τ̂ ≡ 1
n1

n∑
i=1

TiYi −
1
n0

n∑
i=1

(1− Ti)Yi
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Randomized Experiments Classical Randomized Experiments

Sample Inference

Define O ≡ {Yi(0),Yi(1)}ni=1
Unbiasedness (over repeated treatment assignments):

E(τ̂ | O) = SATE

Exact variance of τ̂ :

V(τ̂ | O) =
1
n

(
n0

n1
S2

1 +
n1

n0
S2

0 + 2S01

)
,

where for t = 0,1,

S2
t =

1
n − 1

n∑
i=1

(Yi (t)− Y (t))2 sample variance of Yi (t)

S01 =
1

n − 1

n∑
i=1

(Yi (0)− Y (0))(Yi (1)− Y (1)) sample covariance

The variance is NOT identifiable
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Randomized Experiments Classical Randomized Experiments

Population Inference

Now assume that units are randomly sampled from a population
Unbiasedness (over repeated sampling):

E{E(τ̂ | O)} = E(SATE) = PATE

Exact variance

V(τ̂) = V(E(τ̂ | O)) + E(V(τ̂ | O))

=
σ2

1
n1

+
σ2

0
n0

where σ2
t is the population variance of Yi(t) for t = 0,1

Kosuke Imai (Princeton) Identification & Causal Inference (Part I) EITM, June 2011 9 / 80



Randomized Experiments Classical Randomized Experiments

Relationships with Regression

Simple regression: Yi = α + βTi + εi

Potential outcomes: Yi(Ti) = α + βTi + εi(Ti)

Causal effects: τi = β + (εi(1)− εi(0)) and τ = β

Algebraic equivalence: β̂LS = τ̂

Bias of usual standard error:

(n1 − n0)(n − 1)

n1n0(n − 2)
(σ2

1 − σ2
0)

Bias of “robust” standard error:

−

(
σ2

1

n2
1

+
σ2

0

n2
0

)

Heteroskedasticity: σ1 6= σ0
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Randomized Experiments Cluster Randomized Experiments

Cluster Randomized Experiments

Units: i = 1,2, . . . ,nj

Clusters of units: j = 1,2, . . . ,m
Treatment at cluster level: Tj ∈ {0,1}
Outcome: Yij = Yij(Tj)

Random assignment: (Yij(1),Yij(0))⊥⊥Tj

Estimands at unit level:

SATE ≡ 1∑m
j=1 nj

m∑
j=1

nj∑
i=1

(Yij(1)− Yij(0))

PATE ≡ E(Yij(1)− Yij(0))

Random sampling of clusters and units
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Randomized Experiments Cluster Randomized Experiments

Merits and Limitations of CREs

Interference between units within a cluster is allowed
Assumption: No interference between units of different clusters
Often easy to implement: Mexican health insurance experiment

Opportunity to estimate the spill-over effects
D. W. Nickerson. Spill-over effect of get-out-the-vote canvassing
within household (APSR, 2008)

Limitations:
1 A large number of possible treatment assignments
2 Loss of statistical power
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Randomized Experiments Cluster Randomized Experiments

Design-Based Inference

For simplicity, assume equal cluster size, i.e., nj = n for all j
The difference-in-means estimator:

τ̂ ≡ 1
m1

m∑
j=1

TjY j −
1

m0

m∑
j=1

(1− Tj)Y j

where Y j ≡
∑nj

i=1 Yij/nj

Easy to show E(τ̂ | O) = SATE and thus E(τ̂) = PATE
Exact population variance:

Var(τ̂) =
Var(Yj(1))

m1
+

Var(Yj(0))

m0

Intracluster correlation coefficient ρt :

Var(Yj(t)) =
σ2

t
n
{1 + (n − 1)ρt} ≤ σ2

t
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Randomized Experiments Cluster Randomized Experiments

Relationship with Cluster Standard Error in Regression

Cluster-adjusted robust variance estimator:

̂V((α̂, β̂) | T ) =

 m∑
j=1

X>j Xj

−1 m∑
j=1

X>j ε̂j ε̂
>
j Xj

 m∑
j=1

X>j Xj

−1

where in this case Xj = [1Tj ] is an nj × 2 matrix and
ε̂j = (ε̂1j , . . . , ε̂nj j) is a column vector of length nj

Design-based evaluation (assume nj = n for all j):

Finite Sample Bias = −

(
V(Yj(1))

m2
1

+
V(Yj(0))

m2
0

)

Bias vanishes asymptotically as m→∞ with n fixed

Clustering should be done at the level of treatment assignment
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Randomized Experiments Permutation Inference

Fisher’s Lady Tasting Tea

Does tea taste different depending on whether the tea was poured
into the milk or whether the milk was poured into the tea?
8 cups; n = 8
Randomly choose 4 cups into which pour the tea first (Ti = 1)
Null hypothesis: the lady cannot tell the difference
H0 : Yi(1) = Yi(0) for all i = 1, . . . ,8
Statistic: the number of correctly classified cups
The lady classified all 8 cups correctly!
Did this happen by chance?
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Randomized Experiments Permutation Inference

Permutation Inference

cups guess actual scenarios . . .
1 M M T T
2 T T T T
3 T T T T
4 M M T M
5 M M M M
6 T T M M
7 T T M T
8 M M M M

correctly guessed 8 4 6
0 2 4 6 8

   Frequency

Number of correctly guessed cups

fr
eq

ue
nc

y

0
5

10
20

30

0 2 4 6 8

Probability Distribution

Number of correctly guessed cups

pr
ob

ab
ili

ty

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

8C4 = 70 ways to do this and each arrangement is equally likely
What is the p-value?
No assumption, but the sharp null may be of little interest
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Randomized Experiments Permutation Inference

Formalization of the “Lady Tasting Tea”

Sharp null hypothesis, H0 : Yi(1)− Yi(0) = τ0 for all i
Test statistic: f (Y,T, τ0) for some function f (·, ·, ·)
Exact p-value: pexact ≡ Pr(f (Y, tobs, τ0) ≤ f (Y,T, τ0)) under H0

Nonparametric, exact, computationally intensive
Commonly used test statistics: sum of successes, sum of ranks

Exact population inference without the constant additive treatment
effect assumption (Wilcoxon’s rank-sum statistic):

FY (1)(y) = FY (0)(y + τ)

Example: California Alphabet Lottery (Ho and Imai JASA, 2006)
Inference with complex treatment assignment mechanisms
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Randomized Experiments Permutation Inference

Exact Confidence Sets and Population Inference

Invert the exact test
Collect null values that cannot be rejected by α-level test
Yields (1− α)× 100% confidence set
Restrictive assumption: Constant additive treatment effect

Aα = {τ0 : Pr(f (Y, tobs, τ0) ≤ f (Y,T, τ0)) ≥ α}.

Coverage probability equals exactly (1− α) over repeated
(hypothetical) experiments

Confidence intervals for the causal effect estimate of one
observation
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Randomized Experiments List Experiments

List Experiment: An Example

The 1991 National Race and Politics Survey (Sniderman et al.)
Randomize the sample into the treatment and control groups
The script for the control group

Now I’m going to read you three things that sometimes
make people angry or upset. After I read all three,
just tell me HOW MANY of them upset you. (I don’t
want to know which ones, just how many.)

(1) the federal government increasing the tax on
gasoline;
(2) professional athletes getting million-dollar-plus
salaries;
(3) large corporations polluting the environment.
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Randomized Experiments List Experiments

List Experiment: An Example

The 1991 National Race and Politics Survey (Sniderman et al.)
Randomize the sample into the treatment and control groups
The script for the treatment group

Now I’m going to read you four things that sometimes
make people angry or upset. After I read all four,
just tell me HOW MANY of them upset you. (I don’t
want to know which ones, just how many.)

(1) the federal government increasing the tax on
gasoline;
(2) professional athletes getting million-dollar-plus
salaries;
(3) large corporations polluting the environment;
(4) a black family moving next door to you.
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Randomized Experiments List Experiments

Identification Assumptions

1 No Design Effect: The inclusion of the sensitive item does not
affect answers to control items

2 No Liars: Answers about the sensitive item are truthful

Under these assumptions, difference-in-means estimator is unbiased
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Randomized Experiments List Experiments

Potential Outcomes Framework

Define a type of each respondent by
total number of yes for control items Yi (0)
truthful answer to the sensitive item Z ∗i

Under the above assumptions, Yi(1) = Yi(0) + Z ∗i
A total of (2× (J + 1)) types

Example: three control items (J = 3)

Yi Treatment group Control group
4 (3,1)
3 (2,1) (3,0) (3,1) (3,0)
2 (1,1) (2,0) (2,1) (2,0)
1 (0,1) (1,0) (1,1) (1,0)
0 (0,0) (0,1) (0,0)
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Randomized Experiments List Experiments

Potential Outcomes Framework

Define a type of each respondent by
total number of yes for control items Yi (0)
truthful answer to the sensitive item Z ∗i

Under the above assumptions, Yi(1) = Yi(0) + Z ∗i
A total of (2× (J + 1)) types

Example: three control items (J = 3)

Yi Treatment group Control group
4 (3,1)
3 (2,1) (3,0) (3,1) (3,0)
2 (1,1) (2,0) (2,1) (2,0)
1 ���(0,1) ���(1,0) (1,1) ���(1,0)
0 ���(0,0) ���(0,1) ���(0,0)

Joint distribution of (Yi(0),Z ∗i ) is identified

Kosuke Imai (Princeton) Identification & Causal Inference (Part I) EITM, June 2011 23 / 80



Randomized Experiments List Experiments

Likelihood Inference

g(x , δ) = Pr(Z ∗i,J+1 = 1 | Xi = x)

hz(y ; x , ψz) = Pr(Yi(0) = y | Xi = x ,Zi,J+1(0) = z)

The “Mixture Model” likelihood function:∏
i∈J (1,0)

(1− g(Xi , δ))h0(0; Xi , ψ0)
∏

i∈J (1,J+1)

g(Xi , δ)h1(J; Xi , ψ1)

×
J∏

y=1

∏
i∈J (1,y)

{g(Xi , δ)h1(y − 1; Xi , ψ1) + (1− g(Xi , δ))h0(y ; Xi , ψ0)}

×
J∏

y=0

∏
i∈J (0,y)

{g(Xi , δ)h1(y ; Xi , ψ1) + (1− g(Xi , δ))h0(y ; Xi , ψ0)}

where J (t , y) represents a set of respondents with (Ti ,Yi) = (t , y)

Maximizing this function is difficult
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Randomized Experiments List Experiments

Missing Data Formulation

Consider Z ∗i,J+1 as (partially) missing data
The complete-data likelihood has a much simpler form:

N∏
i=1

{
g(Xi , δ)h1(Yi − 1; Xi , ψ1)Ti h1(Yi ; Xi , ψ1)1−Ti

}Zi,J+1(0)

×{(1− g(Xi , δ))h0(Yi ; Xi , ψ0)}1−Zi,J+1(0)

The EM algorithm (Dempster, Laird, and Rubin):
1 E-step: Compute

Q(θ | θ(t)) ≡ E{ln(θ | Yobs,Ymis) | Yobs, θ
(t)}

where ln(θ | Yobs,Ymis) is the complete-data log-likelihood
2 M-step: Find

θ(t+1) = argmax
θ∈Θ

Q(θ | θ(t))

Monotone convergence: ln(θ(t+1) | Yobs) ≥ ln(θ(t) | Yobs)
Stable, no derivative required
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Randomized Experiments List Experiments

EM Algorithm for List Experiments

1 E-step:

wi = E(Z ∗i,J+1 | Yi = y ,Ti = t ,Xi = x)

=


0 if (t , y) = (1,0)
1 if (t , y) = (1, J + 1)

g(x ,δ)h1(y−t ;x ,ψ1)
g(x ,δ)h1(y−t ;x ,ψ1)+(1−g(x ,δ))h0(y ;x ,ψ0) otherwise

2 M-step:
weighted regression for g(x , δ)
weighted regression for hz(y ; x , ψz)
weights are wi and 1− wi

3 Connection to data augmentation in Bayesian MCMC
Sample Z ∗ given (δ, ψz ,Y ,T ,X )
Sample (δ, ψz) given (Y ,T ,X ,Z ∗)
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Randomized Experiments List Experiments

Hypothesis Test for List Experiment Failures

Under the null hypothesis of no design effect and no liar, we

π1 = Pr(type = (y ,1)) = Pr(Yi ≤ y | Ti = 0)− Pr(Yi ≤ y | Ti = 1) ≥ 0
π0 = Pr(type = (y ,0)) = Pr(Yi ≤ y | Ti = 1)− Pr(Yi < y | Ti = 0) ≥ 0

for each y
Alternative hypothesis: At least one is negative
Test of two stochastic dominance relationships

Watch out for multiple testing
Failure to reject the null may arise from the lack of power
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Randomized Experiments List Experiments

Modeling Ceiling and Floor Effects

Potential liars:

Yi Treatment group Control group
4 (3,1)
3 (2,1) (3,0) (3,1)∗ (3,1) (3,0)
2 (1,1) (2,0) (2,1) (2,0)
1 (0,1) (1,0) (1,1) (1,0)
0 (0,0) (0,1)∗ (0,1) (0,0)

Proposed strategy: model ceiling and/or floor effects under an
additional assumption
Identification assumption: conditional independence between
items given covariates
ML estimation can be extended to this situation
More on list experiments: Imai (2011, JASA), Blair and Imai (2011)
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Randomized Experiments Concluding Remarks

Key Points

Identification and inference
Potential outcomes framework of causal inference
Design-based inference
Connections to regression models
Causal inference as a missing data problem
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Randomized Experiments Concluding Remarks

Important Topics in the Methodological Literature

Identification of heterogenous treatment effect
Derivation of individualized treatment rules
Extrapolation from an experimental sample
Identification of spill-over effects
Identification of causal mechanisms

Kosuke Imai (Princeton) Identification & Causal Inference (Part I) EITM, June 2011 30 / 80



Observational Studies Challenges

Identification of the Average Treatment Effect

Assumption 1: Overlap (i.e., no extrapolation)

0 < Pr(Ti = 1 | Xi = x) < 1 for any x ∈ X

Assumption 2: Ignorability (exogeneity, unconfoundedness, no
omitted variable, selection on observables, etc.)

{Yi(1),Yi(0)} ⊥⊥ Ti | Xi = x for any x ∈ X

Conditional expectation function: µ(t , x) = E(Yi(t) | Ti = t ,Xi = x)

Regression-based Estimator:

τ̂ =
1
n

n∑
i=1

{µ̂(1,Xi)− µ̂(0,Xi)}

Delta method is pain, but simulation is easy (Zelig)
FURTHER READING: Imbens (2004, Rev. Econ. Stat.)
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Observational Studies Challenges

Partial Identification

A special case with binary outcome

[−Pr(Yi = 0 | Ti = 1,Xi = x)π(x)− Pr(Yi = 1 | Ti = 0,Xi = x){1− π(x)},
Pr(Yi = 1 | Ti = 1,Xi = x)π(x) + Pr(Yi = 0 | Ti = 0,Xi = x){1− π(x)}]

where π(x) = Pr(Ti = 1 | Xi = x) is called propensity score

The width of the bounds: 1 “A glass is half empty/full”

Monotone treatment selection (Manski):

[Pr(Yi = 1 | Ti = 1,Xi = x)π(x)− Pr(Yi = 1 | Xi = x),

Pr(Yi = 1 | Xi = x)− Pr(Yi = 1 | Ti = 0,Xi = x)(1− π(x))].

The width of the bounds: Pr(Yi | Xi = x)

FURTHER READING: Manski (2007, Harvard UP)
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Observational Studies Challenges

Sensitivity Analysis

Consider a simple pair-matching of treated and control units
Assumption: treatment assignment is “random”
Difference-in-means estimator

Question: How large a departure from the key (untestable)
assumption must occur for the conclusions to no longer hold?
Rosenbaum’s sensitivity analysis: for any pair j ,

1
Γ
≤

Pr(T1j = 1)/Pr(T1j = 0)

Pr(T2j = 1)/Pr(T2j = 0)
≤ Γ

Under ignorability, Γ = 1 for all j
How do the results change as you increase Γ?
Limitations of sensitivity analysis
FURTHER READING: P. Rosenbaum. Observational Studies.
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Observational Studies Matching Methods in Randomized Experiments

Covariate Adjustments in Experiments

Adjusting for covariates may lead to efficiency gain
Dangers of post-randomization covariate adjustment

Bias due to statistical methods
Bias due to post-hoc analysis

Make adjustments before the randomization of treatment
Employ design-based inference rather than model-based
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Observational Studies Matching Methods in Randomized Experiments

Randomized-block Design

Form a group of units based on the pre-treatment covariates so
that the observations within each block are similar
Complete randomization of the treatment within each block
Inference based on the weighted average of within-block estimates

Blocking can never hurt; unbiased and no less efficient
Difference in asymptotic variance:

V(Y (1)b + Y (0)b) ≥ 0

where Y (t)b is the within-block mean of Yi(t)
Efficiency gain is greater if across-block heterogeneity is greater
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Observational Studies Matching Methods in Randomized Experiments

Matched-Pair Design

Blocking where the size of all blocks is 2
Create pairs of units based on the pre-treatment covariates so
that within the units within a pair are similar to each other
Randomly assign the treatment within each matched-pair
Inference based on the average of within-pair differences

Difference in variances:

1
n/2

Cov(Yij(1),Yi ′j(0))

Greater within-pari similarity leads to greater efficiency
Multivariate blocking/matching methods
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Observational Studies Matching Methods in Observational Studies

Matching as Nonparametric Preprocessing

Assume exogeneity holds: matching does not solve endogeneity
Need to model E(Yi | Ti ,Xi)

Non-parametric regression – curse of dimensionality
Parametric regression – functional-form/distributional assumptions
Preprocess the data so that treatment and control groups are
similar to each other w.r.t. the observed pre-treatment covariates

Goal of matching: achieve balance

F̃ (X | T = 1) = F̃ (X | T = 0)

where F̃ (·) is the empirical distribution
Reduced model dependence: minimal role of statistical modeling
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Observational Studies Matching Methods in Observational Studies

The Role of Propensity Score

The probability of receiving the treatment:

π(Xi) ≡ Pr(Ti = 1 | Xi)

The balancing property under exogeneity:

Ti ⊥⊥ Xi | π(Xi)

Exogeneity given the propensity score:

(Yi(1),Yi(0)) ⊥⊥ Ti | π(Xi)

Dimension reduction
But, true propensity score is unknown: propensity score tautology
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Observational Studies Matching Methods in Observational Studies

Classical Matching Techniques

Exact matching

Mahalanobis distance matching:
√

(Xi − Xj)>Σ̃−1(Xi − Xj)

Propensity score matching
One-to-one, one-to-many, and subclassification
Matching with caliper

Which matching method to choose?
Whatever gives you the “best” balance!
Importance of substantive knowledge: propensity score matching
with exact matching on key confounders

FURTHER READING: Rubin (2006). Matched Sampling for Causal
Effects (Cambridge UP)

Kosuke Imai (Princeton) Identification & Causal Inference (Part I) EITM, June 2011 39 / 80



Observational Studies Matching Methods in Observational Studies

How to Check Balance

Success of matching method depends on the resulting balance
How should one assess the balance of matched data?
Ideally, compare the joint distribution of all covariates for the
matched treatment and control groups
In practice, this is impossible when X is high-dimensional
Check various lower-dimensional summaries; (standardized)
mean difference, variance ratio, empirical CDF, etc.

Frequent use of balance test
t test for difference in means for each variable of X
other test statistics; e.g., χ2, F , Kolmogorov-Smirnov tests
statistically insignificant test statistics as a justification for the
adequacy of the chosen matching method and/or a stopping rule for
maximizing balance
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Observational Studies Matching Methods in Observational Studies

An Illustration of Balance Test Fallacy
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Observational Studies Matching Methods in Observational Studies

Problems with Hypothesis Tests as Stopping Rules

Balance test is a function of both balance and statistical power
The more observations dropped, the less power the tests have
t-test is affected by factors other than balance,

√
nm(X mt − X mc)√

s2
mt

rm
+ s2

mc
1−rm

X mt and X mc are the sample means
s2

mt and s2
mc are the sample variances

nm is the total number of remaining observations
rm is the ratio of remaining treated units to the total number of
remaining observations

Balance is a characteristic of sample rather than population
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An Empirical Example

“Value of political power” by Eggers and Hainmueller (APSR)

Figure 3: Covariate Balance Before and After Matching
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Observational Studies Matching Methods in Observational Studies

Inverse Propensity Score Weighting

Matching is inefficient because it throws away data
Weighting by inverse propensity score

1
n

n∑
i=1

(
TiYi

π̂(Xi)
− (1− Ti)Yi

1− π̂(Xi)

)
An improved weighting scheme:∑n

i=1{TiYi/π̂(Xi)}∑n
i=1{Ti/π̂(Xi)}

−
∑n

i=1{(1− Ti)Yi/(1− π̂(Xi))}∑n
i=1{(1− Ti)/(1− π̂(Xi))}

Unstable when some weights are extremely small
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Observational Studies Matching Methods in Observational Studies

Efficient Doubly-Robust Estimators

The estimator by Robins et al. :

τ̂DR ≡

{
1
n

n∑
i=1

µ̂(1,Xi) +
1
n

n∑
i=1

Ti(Yi − µ̂(1,Xi))

π̂(Xi)

}

−

{
1
n

n∑
i=1

µ̂(0,Xi) +
1
n

n∑
i=1

(1− Ti)(Yi − µ̂(0,Xi))

1− π̂(Xi)

}
Consistent if either the propensity score model or the outcome
model is correct
(Semiparametrically) Efficient
FURTHER READING: Lunceford and Davidian (2004, Stat. in Med.)

Estimator can behave poorly when both models are incorrect
(especially if weights are highly variable)
Recent work on stabilized weights
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Observational Studies Matching Methods in Observational Studies

Weighting for Panel Data

Synthetic Control Method: Abadie et al. (2010, JASA)
Setting: one treated unit, observations before and after the
treatment assignment
Idea: Use the weighted average of control units to estimate the
counterfactual for the treated unit

Ŷ1t (0) =
N∑

i=2

wiYit for any t

Key assumptions:
1 No interference between units
2 Weights exist
3 Extrapolation of weights is valid
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Observational Studies Matching Methods in Observational Studies

Permutation Inference for Synthetic Control Method

500 Journal of the American Statistical Association, June 2010

trol states than in California. In contrast, the synthetic Califor-
nia accurately reproduces the values that smoking prevalence
and smoking prevalence predictor variables had in California
prior to the passage of Proposition 99.

Table 1 highlights an important feature of synthetic control
estimators. Similar to matching estimators, the synthetic con-
trol method forces the researcher to demonstrate the affinity be-
tween the region exposed to the intervention of interest and its
synthetic counterpart, that is, the weighted average of regions
chosen from the donor pool. As a result, the synthetic control
method safeguards against estimation of “extreme counterfactu-
als,” that is, those counterfactuals that fall far outside the convex
hull of the data (King and Zheng 2006). As explained in Sec-
tion 2.3, we chose V among all positive definite and diagonal
matrices to minimize the mean squared prediction error of per
capita cigarette sales in California during the pre-Proposition 99
period. The resulting value of the diagonal element of V asso-
ciated to the log GDP per capita variable is very small, which
indicates that, given the other variables in Table 1, log GDP
per capita does not have substantial power predicting the per
capita cigarette consumption in California before the passage
of Proposition 99. This explains the discrepancy between Cali-
fornia and its synthetic version in terms of log GDP per capita.

Table 2 displays the weights of each control state in the syn-
thetic California. The weights reported in Table 2 indicate that
smoking trends in California prior to the passage of Proposi-
tion 99 is best reproduced by a combination of Colorado, Con-
necticut, Montana, Nevada, and Utah. All other states in the
donor pool are assigned zero W-weights.

Figure 2 displays per capita cigarette sales for California and
its synthetic counterpart during the period 1970–2000. Notice

Table 2. State weights in the synthetic California

State Weight State Weight

Alabama 0 Montana 0.199
Alaska – Nebraska 0
Arizona – Nevada 0.234
Arkansas 0 New Hampshire 0
Colorado 0.164 New Jersey –
Connecticut 0.069 New Mexico 0
Delaware 0 New York –
District of Columbia – North Carolina 0
Florida – North Dakota 0
Georgia 0 Ohio 0
Hawaii – Oklahoma 0
Idaho 0 Oregon –
Illinois 0 Pennsylvania 0
Indiana 0 Rhode Island 0
Iowa 0 South Carolina 0
Kansas 0 South Dakota 0
Kentucky 0 Tennessee 0
Louisiana 0 Texas 0
Maine 0 Utah 0.334
Maryland – Vermont 0
Massachusetts – Virginia 0
Michigan – Washington –
Minnesota 0 West Virginia 0
Mississippi 0 Wisconsin 0
Missouri 0 Wyoming 0

Figure 2. Trends in per-capita cigarette sales: California vs. syn-
thetic California.

that, in contrast to per capita sales in other U.S. states (shown
in Figure 1), per capita sales in the synthetic California very
closely track the trajectory of this variable in California for the
entire pre-Proposition 99 period. Combined with the high de-
gree of balance on all smoking predictors (Table 1), this sug-
gests that the synthetic California provides a sensible approxi-
mation to the number of cigarette packs per capita that would
have been sold in California in 1989–2000 in the absence of
Proposition 99.

Our estimate of the effect of Proposition 99 on cigarette con-
sumption in California is the difference between per capita ciga-
rette sales in California and in its synthetic version after the pas-
sage of Proposition 99. Immediately after the law’s passage, the
two lines begin to diverge noticeably. While cigarette consump-
tion in the synthetic California continued on its moderate down-
ward trend, the real California experienced a sharp decline. The
discrepancy between the two lines suggests a large negative ef-
fect of Proposition 99 on per capita cigarette sales. Figure 3
plots the yearly estimates of the impacts of Proposition 99, that
is, the yearly gaps in per capita cigarette consumption between
California and its synthetic counterpart. Figure 3 suggests that
Proposition 99 had a large effect on per capita cigarette sales,
and that this effect increased in time. The magnitude of the es-
timated impact of Proposition 99 in Figure 3 is substantial. Our
results suggest that for the entire 1989–2000 period cigarette
consumption was reduced by an average of almost 20 packs per
capita, a decline of approximately 25%.

In order to assess the robustness of our results, we included
additional predictors of smoking prevalence among the vari-
ables used to construct the synthetic control. Our results stayed
virtually unaffected regardless of which and how many predic-
tor variables we included. The list of predictors used for robust-
ness checks included state-level measures of unemployment,
income inequality, poverty, welfare transfers, crime rates, drug
related arrest rates, cigarette taxes, population density, and nu-
merous variables to capture the demographic, racial, and social
structure of states.

502 Journal of the American Statistical Association, June 2010

Figure 4. Per-capita cigarette sales gaps in California and placebo
gaps in all 38 control states.

provide a good fit for per capita cigarette consumption prior
to Proposition 99 for the majority of the states in the donor
pool. However, Figure 4 indicates also that per capita cigarette
sales during the 1970–1988 period cannot be well reproduced
for some states by a convex combination of per capita ciga-
rette sales in other states. The state with worst fit in the pre-
Proposition 99 period is New Hampshire, with a MSPE of 3437.
The large MSPE for New Hampshire does not come as a sur-
prise. Among all the states in the donor pool, New Hampshire
is the state with the highest per capita cigarette sales for every
year prior to the passage of Proposition 99. Therefore, there is
no combination of states in our sample that can reproduce the
time series of per capita cigarette sales in New Hampshire prior
to 1988. Similar problems arise for other states with extreme
values of per capita cigarette sales during the pre-Proposition 99
period.

If the synthetic California had failed to fit per capita ciga-
rette sales for the real California in the years before the pas-
sage of Proposition 99, we would have interpreted that much
of the post-1988 gap between the real and the synthetic Cal-
ifornia was also artificially created by lack of fit, rather than
by the effect of Proposition 99. Similarly, placebo runs with
poor fit prior to the passage of Proposition 99 do not provide
information to measure the relative rarity of estimating a large
post-Proposition 99 gap for a state that was well fitted prior
to Proposition 99. For this reason, we provide several different
versions of Figure 4, each version excluding states beyond a
certain level of pre-Proposition 99 MSPE.

Figure 5 excludes states that had a pre-Proposition 99 MSPE
of more than 20 times the MSPE of California. This is a very
lenient cutoff, discarding only four states with extreme values
of pre-Proposition 99 MSPE for which the synthetic method
would be clearly ill-advised. In this figure there remain a few
lines that still deviate substantially from the zero gap line in the
pre-Proposition 99 period. Among the 35 states remaining in
the figure, the California gap line is now about the most unusual
line, especially from the mid-1990s onward.

Figure 5. Per-capita cigarette sales gaps in California and placebo
gaps in 34 control states (discards states with pre-Proposition 99
MSPE twenty times higher than California’s).

Figure 6 is based on a lower cutoff, excluding all states that
had a pre-Proposition 99 MSPE of more than five times the
MSPE of California. Twenty-nine control states plus California
remain in the figure. The California gap line is now clearly the
most unusual line for almost the entire post-treatment period.

In Figure 7 we lower the cutoff even further and focus
exclusively on those states that we can fit almost as well
as California in the period 1970–1988, that is, those states
with pre-Proposition 99 MSPE not higher than twice the pre-
Proposition 99 MSPE for California. Evaluated against the dis-
tribution of the gaps for the 19 remaining control states in Fig-
ure 7, the gap for California appears highly unusual. The nega-
tive effect in California is now by far the lowest of all. Because
this figure includes 19 control states, the probability of estimat-

Figure 6. Per-capita cigarette sales gaps in California and placebo
gaps in 29 control states (discards states with pre-Proposition 99
MSPE five times higher than California’s).
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Observational Studies Matching and Regression

Matching vs. Regression

They are based on the same qualitative assumption: ignorability
Neither method solves endogeneity
Matching is nonparametric: more flexible
It also forces researchers to look at covariate balance
Importance of the overlap assumption
Matching and regression can be used together: matching as
nonparametric preprocessing for reducing model dependence

Matching (and the potential outcomes framework in general)
clarifies what information is used to “impute” counterfactual
outcomes
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Observational Studies Matching and Regression

Matching Representation of Simple Regression

Simple regresison: Yi = α + βXi + εi

Binary treatment: Xi ∈ {0,1}
Matching representation:

β̂ =
1
N

N∑
i=1

(
Ŷi (1)− Ŷi (0)

)
where

Ŷi (1) =

{
Yi if Xi = 1

1
N1

∑N
i′=1 Xi′Yi′ if Xi = 0

Ŷi (0) =

{
1

N0

∑N
i′=1(1− Xi′)Yi′ if Xi = 1

Yi if Xi = 0
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Observational Studies Matching and Regression

Matching Representation of Fixed Effects Regression

Simple fixed effects regression: Yit = αi + βXit + εit
Binary treatment: Xi ∈ {0,1}
Matching representation: Prop. 1 of Imai and Kim (2011)

β̂FE =
1
K

{
1

NT

N∑
i=1

T∑
t=1

(
Ŷit (1)− Ŷit (0)

)}
where

Ŷit (x) =

{
Yit if Xit = x

1
T−1

∑
t′ 6=t Yit′ if Xit = 1− x for x = 0,1,

K =
1

NT

N∑
i=1

T∑
t=1

Xit ·
1

T − 1

∑
t′ 6=t

(1− Xit′)

+(1− Xit ) ·
1

T − 1

∑
t′ 6=t

Xit′

 .
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Observational Studies Matching and Regression

Matching and Weighted Fixed Effects Estimator

A more natural unadjusted matching estimator (Prop. 2):

β̂M =
1

NT

N∑
i=1

T∑
t=1

(
Ŷit (1)− Ŷit (0)

)
where

Ŷit (1) =

{
Yi if Xit = 1∑T

t′=1 Xit′Yit′∑T
t′=1 Xit′

if Xit = 0

Ŷit (0) =

{ ∑T
t′=1(1−Xit′ )Yit′∑T

t′=1(1−Xit′ )
if Xit = 1

Yit if Xit = 0

Equivalent to the weighted fixed effects regression where the
weights are the inverse of the estimated propensity score:

Wit ≡

{ T∑T
t′=1 Xit′

if Xit = 1,
T∑T

t′=1(1−Xit′ )
if Xit = 0.
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Observational Studies Matching and Regression

General Equivalence Result (Theorem 1)

Consider a general class of unadjusted matching:

Ŷit (1) =

{
Yit if Xit = 1∑T

t′=1 v it′
it Xit′Yit′ if Xit = 0

Ŷit (0) =

{ ∑T
t′=1 v it′

it (1− Xit′)Yit′ if Xit = 1
Yit if Xit = 0

where
∑T

t ′=1 v it ′
it Xit ′ =

∑T
t ′=1 v it ′

it (1− Xit ′) = 1.
Example: estimated inverse-propensity score weighting

v it′
it =


(1−π̂(Zit′ ))−1∑T

t∗=1(1−π̂(Zit∗ ))−1(1−Xit∗ )
if Xit = 1

π̂(Zit′ )
−1∑T

t∗=1 π̂(Zit∗ )−1Xit∗
if Xit = 0

The one-way fixed effects regression weights can be derived from
any non-negative (normalized) weight v it ′

it .
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Observational Studies Matching and Regression

What about the Two-Way Fixed Effects Estimator?

The Model:
Yit = αi + γt + βXit + εit

where a restriction such as
∑T

t=1 γt = 0 is needed
The matching representation (Prop. 3):

Ŷit (x) =

{
Yit if Xit = x∑

t′ 6=t Yit′

T−1 +
∑

i′ 6=i Yi′ t
N−1 −

∑
i′ 6=i

∑
t′ 6=t Yi′ t′

(T−1)(N−1) if Xit = 1− x

K =
1

NT

N∑
i=1

T∑
t=1

{
Xit

(∑T
t′=1(1− Xit′)

T − 1
+

∑N
i′=1(1− Xi′t )

N − 1

−
∑

i′ 6=i
∑

t′ 6=t (1− Xi′t′)

(T − 1)(N − 1)

)
+ (1− Xit )

(∑T
t′=1 Xit′

T − 1
+

∑N
i′=1 Xi′t

N − 1
−
∑

i′ 6=i
∑

t′ 6=t Xi′t′

(T − 1)(N − 1)

)}
.
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Observational Studies Matching and Regression

Can We Improve It? (Prop. 4)
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Implications for applied data analysis:
1 Two-way fixed effects estimator is difficult to justify from a causal

inference perspective
2 One-way fixed effects can be improved by the weighted one-way

fixed effects based on propensity scores
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Observational Studies Concluding Remarks

Recent Developments in the Methodological Literature

The main problem of matching/weighting: balance checking
Skip balance checking all together
Specify a balance metric and optimize it

Optimal matching
Genetic matching
Fine matching
Coarsened exact matching
Entropy balancing
SVM matching

Matching and weighting in panel data settings
Dynamic treatment regimes via inverse propensity score weighting
Synthetic control method
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Instrumental Variables and Causal Mediation Analysis Introduction

Coping with Endogeneity in Observational Studies

Selection bias in observational studies

Two research design strategies:
1 Find a plausibly exogenous treatment
2 Find a plausibly exogenous instrument

A valid instrument satisfies the following conditions
1 Exogenously assigned – no confounding
2 It monotonically affects treatment
3 It affects outcome only through treatment – no direct effect

Challenge: plausibly exogenous instruments with no direct effect
tends to be weakly
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Instrumental Variables and Causal Mediation Analysis Introduction

Identifying Causal Mechanisms

Randomized experiments as gold standard for causal inference
But, experiments are a black box
Can only tell whether the treatment causally affects the outcome
Not how and why the treatment affects the outcome
Qualitative research uses process tracing

How can quantitative research be used to identify causal
mechanisms?
Causal mediation analysis: direct vs. indirect effects
Identification of causal mechanisms is more difficult than that of
causal effects
“Causal chain approach” does not work
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

Partial Compliance in Randomized Experiments

Unable to force all experimental subjects to take the (randomly)
assigned treatment/control
Intention-to-Treat (ITT) effect 6= treatment effect
Selection bias: self-selection into the treatment/control groups

Political information bias: effects of campaign on voting behavior
Ability bias: effects of education on wages
Healthy-user bias: effects of exercises on blood pressure

Encouragement design: randomize the encouragement to receive
the treatment rather than the receipt of the treatment itself
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

Potential Outcomes Notation

Randomized encouragement: Zi ∈ {0,1}
Potential treatment variables: (Ti(1),Ti(0))

1 Ti (z) = 1: would receive the treatment if Zi = z
2 Ti (z) = 0: would not receive the treatment if Zi = z

Observed treatment receipt indicator: Ti = Ti(Zi)

Observed and potential outcomes: Yi = Yi(Zi ,Ti(Zi))

Can be written as Yi = Yi(Zi)

No interference assumption for Ti(Zi) and Yi(Zi ,Ti)

Randomization of encouragement:

(Yi(1),Yi(0),Ti(1),Ti(0)) ⊥⊥ Zi

But (Yi(1),Yi(0)) 6⊥⊥ Ti | Zi = z, i.e., selection bias
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

Principal Stratification Framework

Imbens and Angrist (1994, Econometrica); Angrist, Imbens, and
Rubin (1996, JASA)
Four principal strata (latent types):

compliers (Ti (1),Ti (0)) = (1,0),

non-compliers

 always − takers (Ti (1),Ti (0)) = (1,1),
never − takers (Ti (1),Ti (0)) = (0,0),

defiers (Ti (1),Ti (0)) = (0,1)

Observed and principal strata:
Zi = 1 Zi = 0

Ti = 1 Complier/Always-taker Defier/Always-taker

Ti = 0 Defier/Never-taker Complier/Never-taker
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

Instrumental Variables and Causality

Randomized encouragement as an instrument for the treatment
Two additional assumptions

1 Monotonicity: No defiers

Ti (1) ≥ Ti (0) for all i .

2 Exclusion restriction: Instrument (encouragement) affects outcome
only through treatment

Yi (1, t) = Yi (0, t) for t = 0,1

Zero ITT effect for always-takers and never-takers
ITT effect decomposition:

ITT = ITTc × Pr(compliers) + ITTa × Pr(always− takers)

+ITTn × Pr(never− takers)

= ITTc Pr(compliers)
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

IV Estimand and Interpretation

IV estimand:

ITTc =
ITT

Pr(compliers)

=
E(Yi | Zi = 1)− E(Yi | Zi = 0)

E(Ti | Zi = 1)− E(Ti | Zi = 0)

=
Cov(Yi ,Zi)

Cov(Ti ,Zi)

ITTc = Complier Average Treatment Effect (CATE)
Local Average Treatment Effect (LATE)
CATE 6= ATE unless ATE for noncompliers equals CATE
Different encouragement (instrument) yields different compliers
Debate among Deaton, Heckman, and Imbens in J. of Econ. Lit.
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

An Example: Testing Habitual Voting

Gerber et al. (2003) AJPS
Randomized encouragement to vote in an election
Treatment: turnout in the election
Outcome: turnout in the next election

Monotonicity: Being contacted by a canvasser would never
discourage anyone from voting
Exclusion restriction: being contacted by a canvasser in this
election has no effect on turnout in the next election other than
through turnout in this election
CATE: Habitual voting for those who would vote if and only if they
are contacted by a canvasser in this election
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

Multi-valued Treatment

Angrist and Imbens (1995, JASA)
Two stage least squares regression:

Ti = α2 + β2Zi + ηi ,

Yi = α3 + γTi + εi .

Binary encouragement and binary treatment,
γ̂ = ĈATE (no covariate)
γ̂

P−→ CATE (with covariates)

Binary encouragement multi-valued treatment
Monotonicity: Ti(1) ≥ Ti(0)

Exclusion restriction: Yi(1, t) = Yi(0, t) for each t = 0,1, . . . ,K
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

Estimator

γ̂TSLS
P−→ Cov(Yi ,Zi)

Cov(Ti ,Zi)
=

E(Yi(1)− Yi(0))

E(Ti(1)− Ti(0))

=
K∑

k=0

K∑
j=k+1

wjkE
(

Yi(1)− Yi(0)

j − k

∣∣∣ Ti(1) = j ,Ti(0) = k
)

where wjk is the weight, which sums up to one, defined as,

wjk =
(j − k) Pr(Ti(1) = j ,Ti(0) = k)∑K

k ′=0
∑K

j ′=k ′+1(j ′ − k ′) Pr(Ti(1) = j ′,Ti(0) = k ′)
.

Easy interpretation under the constant additive effect assumption
for every complier type

Assume encouragement induces at most only one additional dose
Then, wk = Pr(Ti(1) = k ,Ti(0) = k − 1)
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Instrumental Variables and Causal Mediation Analysis Instrumental Variables

Partial Identification of the ATE

Balke and Pearl (1997, JASA)
Randomized binary encouragement, Zi

Binary treatment, Ti = Ti(Zi)

Suppose exclusion restriction holds
Binary outcome, Yi = Yi(Ti ,Zi) = Y ∗i (Ti)

16 Latent types defined by (Yi(1),Yi(0),Ti(1),Ti(0))

q(y1, y0, t1, t0) ≡ Pr(Y ∗i (1) = y1,Y ∗i (0) = y0,Ti(1) = t1,Ti(0) = t0)

ATE

E(Y ∗i (1)− Y ∗i (0))

=
∑
y0

∑
t1

∑
t0

q(1, y0, t1, t0)−
∑
y1

∑
t1

∑
t0

q(y1,1, t1, t0)
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Derivation of Sharp Bounds

Data generating mechanism implies

Pr(Yi = y ,Ti = 1 | Zi = 1) =
∑
y0

∑
t0

q(y , y0,1, t0)

Pr(Yi = y ,Ti = 0 | Zi = 1) =
∑
y1

∑
t0

q(y1, y ,0, t0)

Pr(Yi = y ,Ti = 1 | Zi = 0) =
∑
y0

∑
t1

q(y , y0, t1,1)

Pr(Yi = y ,Ti = 0 | Zi = 0) =
∑
y1

∑
t1

q(y1, y , t1,0).

Monotonicity (optional): q(y1, y0,0,1) = 0
Obtain sharp bounds via linear programming algorithms
Bounds are sometimes informative
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What is Causal Mechanism?

Causal mediation analysis:
Mediator, M

Indrect (Mediation) 
 Effect

Treatment, T Outcome, Y

Direct Effect

Direct and indirect effects; intermediate and intervening variables
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Examples

1 Incumbency effect (Cox and Katz AJPS)
Treatment: incumbency status
Mediator: challenger’s quality
Outcome: reelection
Mechanism: incumbents deter high-quality challengers

2 Vietnam draft lottery (Erikson and Stoker APSR)
Treatment: Vietnam draft lottery
Mediator: military service
Outcome: Political attitudes
Mechanism: the expectation rather than the actuality of military
service influences political attitudes
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Potential Outcomes Framework

Binary treatment: Ti ∈ {0,1}
Mediator: Mi ∈M
Outcome: Yi ∈ Y
Observed pre-treatment covariates: Xi ∈ X

Potential mediators: Mi(t), where Mi = Mi(Ti) observed
Potential outcomes: Yi(t ,m), where Yi = Yi(Ti ,Mi(Ti)) observed

Causal mediation (Indirect) effects:

δi(t) ≡ Yi(t ,Mi(1))− Yi(t ,Mi(0))

Causal effect of the change in Mi on Yi that would be induced by
treatment
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Total Effect = Indirect Effect + Direct Effect

Direct effects:

ζi(t) ≡ Yi(1,Mi(t))− Yi(0,Mi(t))

Causal effect of Ti on Yi , keepting mediator constant at its
potential value that would realize when Ti = t

Total effect = mediation (indirect) effect + direct effect:

τi = δi(t) + ζi(1− t) =
1
2
{δi(0) + δi(1) + ζi(0) + ζi(1)}

Quantities of interest: average direct/indirect effects
Identification problem: Yi(t ,Mi(t)) is observed but Yi(t ,Mi(t ′)) can
never be observed
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Traditional Estimation Method

Linear structural equation model (LSEM):

Mi = α2 + β2Ti + ξ>2 Xi + εi2,

Yi = α3 + β3Ti + γMi + ξ>3 Xi + εi3.

together implying

Yi = α1 + β1Ti + εi1

Fit two least squares regressions separately
Product of coefficients (β̂2γ̂) or Difference of coefficients (β̂1 − β̂3)
Asymptotic test of significance (Sobel test)

What’s the identification assumption?
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Identification under Sequential Ignorability

Identification assumption: Sequential Ignorability

{Yi(t ′,m),Mi(t)} ⊥⊥ Ti | Xi = x (1)

Yi(t ′,m) ⊥⊥ Mi(t) | Ti = t ,Xi = x (2)

(1) is guaranteed to hold in a standard experiment
(2) does not hold unless Xi includes all confounders

Theorem: Under sequential ignorability, ACME and average direct
effects are nonparametrically identified
(= consistently estimated from observed data)
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Exogeneity Is Insufficient

Difference between manipulation and mechanism

Prop. Mi(1) Mi(0) Yi(t ,1) Yi(t ,0) δi(t)
0.3 1 0 0 1 −1
0.3 0 0 1 0 0
0.1 0 1 0 1 1
0.3 1 1 1 0 0

Here, E(Mi(1)−Mi(0)) = E(Yi(t ,1)− Yi(t ,0)) = 0.2, but
δ̄(t) = −0.2

Commonly used causal chain approach is invalid
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Need for Sensitivity Analysis

Standard experiments require sequential ignorability to identify
mechanisms
The sequential ignorability assumption is often too strong

Parametric sensitivity analysis by assuming

{Yi(t ′,m),Mi(t)} ⊥⊥ Ti | Xi = x

but not
Yi(t ′,m) ⊥⊥ Mi(t) | Ti = t ,Xi = x

Possible existence of unobserved pre-treatment confounder
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Sensitivity Analysis for LSEM

Sensitivity parameter: ρ ≡ Corr(εi2, εi3)
Sequential ignorability implies ρ = 0
Set ρ to different values and see how ACME changes

Result:

δ̄(0) = δ̄(1) =
β2σ1

σ2

{
ρ̃− ρ

√
(1− ρ̃2)/(1− ρ2)

}
,

where σ2
j ≡ var(εij) for j = 1,2 and ρ̃ ≡ Corr(εi1, εi2).

When do my results go away completely?
δ̄(t) = 0 if and only if ρ = ρ̃
Easy to estimate from the regression of Yi on Ti :

Yi = α1 + β1Ti + εi1

Alternative parameterizations via R2

Extensions to nonlinear models
Kosuke Imai (Princeton) Identification & Causal Inference (Part I) EITM, June 2011 76 / 80



Instrumental Variables and Causal Mediation Analysis Causal Mediation Analysis

Crossover Design

Need for alternative research designs
Recall ACME can be identified if we observe Yi(t ′,Mi(t))

Get Mi(t), then switch Ti to t ′ while holding Mi = Mi(t)

Crossover design:
1 Round 1: Conduct a standard experiment
2 Round 2: Change the treatment to the opposite status but fix the

mediator to the value observed in the first round

Very powerful – identifies mediation effects for each subject
Must assume no carryover effect: Round 1 cannot affect Round 2
Can be made plausible by design
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Labor Economics Experiment

Bertrand & Mullainathan (2004, AER)
Treatment: Black vs. White names on CVs
Mediator: Perceived qualifications of applicants
Outcome: Callback from employers

Quantity of interest: Direct effects of (perceived) race
Would Jamal get a callback if his name were Greg but his
qualifications stayed the same?

Round 1: Send Jamal’s actual CV and record the outcome
Round 2: Send his CV as Greg and record the outcome

Assumptions are plausible
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Observational Studies Example

Estimation of incumbency advantages goes back to 1960s
Why incumbency advantage? Scaring off quality challenger
Use of cross-over design (Levitt and Wolfram)

1 1st Round: two non-incumbents in an open seat
2 2nd Round: same candidates with one being an incumbent

Assume challenger quality (mediator) stays the same
Estimation of direct effect is possible

Redistricting as natural experiments (Ansolabehere et al.)
1 1st Round: incumbent in the old part of the district
2 2nd Round: incumbent in the new part of the district

Challenger quality is the same but treatment is different
Estimation of direct effect is possible
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Recent Developments in the Methodological Literature

Alternative research designs
Use of randomized encouragement (i.e., instruments)

Alternative definitions and approaches of causal mechanisms
Principal strata direct effects
Causal components

Statistical methods for multiple mediators
Identification assumptions
Sensitivity analysis
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