Experimental Evaluation of Machine Learning Algorithms for Causal Inference

Kosuke Imai

Harvard University

EGAP Summer Methods Series July 28, 2021

Joint work with Michael Lingzhi Li (MIT)

Motivation

- Use of machine learning (ML) algorithms in experimental studies
 - estimate heterogeneous treatment effects
 - 2 construct individualized treatment rules
- Software implementation of various ML algorithms is readily available
- But, do ML algorithms "work" in practice?
 - unknown theoretical properties
 - difficulty of uncertainty quantification
- We should empirically evaluate the performance of ML algorithms
 - avoid assuming the "nice properties" of ML algorithms
 - 2 accurately quantify uncertainty
 - allow for any ML algorithm
 - applicable even when the sample size is small

Overview

- Individualized treatment rules (ITRs)
 - designed to increase efficiency of policies or treatments
 - personalized medicine, micro-targeting in business/politics
- Existing literature:
 - development of optimal ITRs
 - estimation of heterogeneous treatment effects
 - extensive use of machine learning (ML) algorithms
- Goal: use a randomized experiment to evaluate generic ITRs
 - Neyman's repeated sampling framework
 - randomized treatment assignment, random sampling
 - no modeling assumption or asymptotic approximation
 - extend analysis to cross-fitting regime
 - 2 Evaluation measures
 - shortcomings of existing metrics
 - incorporating a budget constraint
 - overall evaluation metric for general ITRs
 - 3 Extension to estimation of heterogeneous effects

Evaluation without a Budget Constraint

- Setup
 - Binary treatment: $T_i \in \{0, 1\}$
 - \bullet Pre-treatment covariates: $X \in \mathcal{X}$
 - No interference: $Y_i(T_1 = t_1, T_2 = t_2, ..., T_n = t_n) = Y_i(T_i = t_i)$
 - Random sampling of units:

$$(Y_i(1), Y_i(0), X_i) \overset{\text{i.i.d.}}{\sim} \mathcal{P}$$

• Completely randomized treatment assignment:

$$\Pr(T_i = 1 | Y_i(1), Y_i(0), X_i) = \frac{n_1}{n} \text{ where } n_1 = \sum_{i=1}^n T_i$$

• Fixed (for now) ITR:

$$f:\mathcal{X}\longrightarrow \{0,1\}$$

- based on any ML algorithm or even a heuristic rule
- sample splitting for experimental data, separate observational data

Kosuke Imai (Harvard)

Neyman's Inference for the Standard Metric

• Standard metric (Population Average "Value" or PAV):

$$\lambda_f = \mathbb{E}\{Y_i(f(X_i))\}$$

• A natural estimator:

$$\hat{\lambda}_f(\mathcal{Z}) = \frac{1}{n_1} \sum_{i=1}^n Y_i T_i f(X_i) + \frac{1}{n_0} \sum_{i=1}^n Y_i (1 - T_i) (1 - f(X_i)),$$

where
$$\mathcal{Z} = \{X_i, T_i, Y_i\}_{i=1}^n$$

- Unbiasedness: $\mathbb{E}\{\hat{\lambda}_f(\mathcal{Z})\} = \lambda_f$
- Variance:

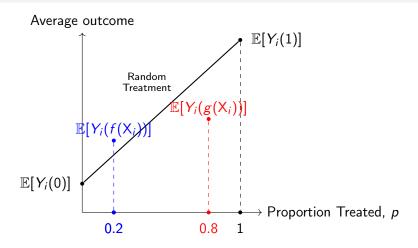
$$\mathbb{V}\{\hat{\lambda}_{f}(\mathcal{Z})\} = \frac{\mathbb{E}(S_{f1}^{2})}{n_{1}} + \frac{\mathbb{E}(S_{f0}^{2})}{n_{0}},$$
where $S_{ft}^{2} = \sum_{i=1}^{n} (Y_{fi}(t) - \overline{Y_{f}(t)})^{2}/(n-1),$
 $Y_{fi}(t) = 1\{f(X_{i}) = t\}Y_{i}(t), \text{ and } \overline{Y_{f}(t)} = \sum_{i=1}^{n} Y_{fi}(t)/n \text{ for } t = \{0, 1\}$

Kosuke Imai (Harvard)

EGAP (July 28, 2021)

5/24

A Problem of Comparing ITRs Using the PAV



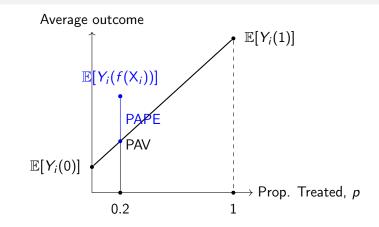
λ_f < λ_g: but g is performing worse than the random (i.e., non-individualized) treatment rule whereas f is not

Need to account for the proportion treated

Kosuke Imai (Harvard)

Experiments and Machine Learning

Accounting for the Proportion of Treated Units



• Population Average Prescriptive Effect (PAPE):

$$\tau_f = \mathbb{E}\{Y_i(f(X_i)) - p_f Y_i(1) - (1 - p_f) Y_i(0)\}$$

where $p_f = \Pr(f(X_i) = 1)$ is the proportion treated under f

Estimating the Population Average Prescriptive Effect

• An unbiased estimator of PAPE τ_f :

$$\hat{\tau}_{f}(\mathcal{Z}) = \frac{n}{n-1} \underbrace{\left[\frac{1}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} f(X_{i}) + \frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) (1 - f(X_{i})) \right]}_{\text{PAV of ITR}} - \underbrace{\frac{\hat{p}_{f}}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} - \frac{1 - \hat{p}_{f}}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) \right]}_{i=1}$$

PAV of random treatment rule with the same treated proportion

where $\hat{p}_f = \sum_{i=1}^n f(X_i)/n$

- We also derive its variance, and propose its consistent estimator
- Not invariant to additive transformation: $Y_i + c$
- Solution: centering $\mathbb{E}(Y_i(1) + Y_i(0)) = 0 \rightsquigarrow$ minimum variance

Estimating and Evaluating ITRs via Cross-Fitting

- Estimate and evaluate an ITR using the same experimental data
- How should we account for both estimation uncertainty and evaluation uncertainty under the Neyman's framework?
- Setup:
 - ML algorithm

$$F: \mathcal{Z} \longrightarrow \mathcal{F}.$$

• K-fold cross-fitting: $\mathcal{Z} = \{\mathcal{Z}_1, \mathcal{Z}_2, \dots, \mathcal{Z}_K\}$

$$\hat{f}_{-k} = F(\mathcal{Z}_1, \mathcal{Z}_2, \dots, \mathcal{Z}_{k-1}, \mathcal{Z}_{k+1}, \dots, \mathcal{Z}_K)$$

• Evaluation metric estimators:

$$\hat{\lambda}_{F} = \frac{1}{K} \sum_{k=1}^{K} \hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_{k}), \quad \hat{\tau}_{F} = \frac{1}{K} \sum_{k=1}^{K} \hat{\tau}_{\hat{f}_{-k}}(\mathcal{Z}_{k})$$

• Uncertainty over both <u>evaluation data</u> and <u>all random sets of training</u> <u>data (of a fixed size)</u> as well as treatment assignment

Causal Estimands

- Population Average Value (PAV)
 - Generalized ITR averaging over the random sampling of training data \mathcal{Z}^{tr}

$$\bar{f}_{\mathcal{F}}(\mathsf{x}) \;=\; \mathbb{E}\{\hat{f}_{\mathcal{Z}^{tr}}(\mathsf{x}) \mid \mathsf{X}_i = \mathsf{x}\} \;=\; \mathsf{Pr}(\hat{f}_{\mathcal{Z}^{tr}}(\mathsf{x}) = 1 \mid \mathsf{X}_i = \mathsf{x})$$

Estimand

$$\lambda_F = \mathbb{E}\left\{\bar{f}_F(\mathsf{X}_i)Y_i(1) + (1 - \bar{f}_F(\mathsf{X}_i))Y_i(0)\right\}$$

- Population Average Prescriptive Effect (PAPE)
 - Proportion treated

$$p_F = \mathbb{E}\{\overline{f}_F(X_i)\}.$$

• Estimand

$$\tau_F = \mathbb{E}\{\lambda_F - p_F Y_i(1) - (1 - p_F) Y_i(0)\}.$$

Inference under Cross-Fitting

- Under Neyman's framework, the cross-fitting estimators are unbiased, i.e., $\mathbb{E}(\hat{\lambda}_F) = \lambda_F$ and $\mathbb{E}(\hat{\tau}_F) = \tau_F$
- The variance of the PAV estimator

$$\mathbb{V}(\hat{\lambda}_{F}) = \underbrace{\frac{\mathbb{E}(S_{\hat{f}1}^{2})}{m_{1}} + \frac{\mathbb{E}(S_{\hat{f}0}^{2})}{m_{0}}}_{\text{evaluation uncertainty}} + \underbrace{\mathbb{E}\left\{\operatorname{Cov}(\hat{f}_{\mathcal{Z}^{tr}}(\mathsf{X}_{i}), \hat{f}_{\mathcal{Z}^{tr}}(\mathsf{X}_{j}) \mid \mathsf{X}_{i}, \mathsf{X}_{j})\tau_{i}\tau_{j}\right\}}_{\text{estimation uncertainty}} - \underbrace{\frac{K - 1}{K} \mathbb{E}(S_{F}^{2})}_{\substack{\text{efficiency gain due}\\\text{to cross-fitting}}}$$

for $i \neq j$ where m_t is the size of the training set with $T_i = t$, $\tau_i = Y_i(1) - Y_i(0), S_F^2 = \sum_{k=1}^{K} \left\{ \hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_k) - \overline{\hat{\lambda}_{\hat{f}_{-k}}(\mathcal{Z}_k)} \right\}^2 / (K-1)$

• Analogous results for the PAPE τ_F

Evaluation with a Budget Constraint

- Policy makers often face a binding budget constraint p
- Scoring rule:

 $s: \mathcal{X} \longrightarrow \mathcal{S}$ where $\mathcal{S} \subset \mathbb{R}$

- Example: CATE $s(x) = \mathbb{E}(Y_i(1) Y_i(0) | X_i = x)$
- (Fixed) ITR with a budget constraint:

$$f(X_i,c) = 1\{s(X_i) > c\},\$$

where $c_p(f) = \inf\{c \in \mathbb{R} : \Pr(f(X_i, c) = 1) \le p\}$

PAPE under a budget constraint

$$\tau_{fp} = \mathbb{E}\{Y_i(f(X_i, c_p(f))) - pY_i(1) - (1-p)Y_i(0)\}.$$

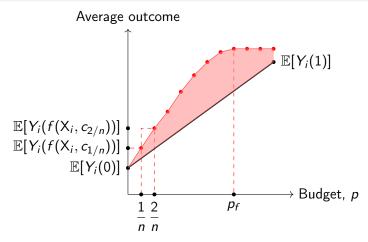
- We derive the bias (and its finite sample bound) and variance under the Neyman's framework
- Extensions: cross-fitting, diff. in PAPE between two ITRs

Kosuke Imai (Harvard)

Experiments and Machine Learning

12/24

The Area Under Prescriptive Effect Curve (AUPEC)



- Measure of performance across different budget constraints
- We show how to do inference with and without cross-fitting
- Normalized AUPEC = average percentage gain using an ITR over the randomized treatment rule across a range of budget contraints

Kosuke Imai (Harvard)

Experiments and Machine Learning

EGAP (July 28, 2021) 13/24

R Package evalITR

```
## train ML algorithms (Causal Forest and BART)
cf <- causal_forest(X_train, Y_train, T_train,
               tune.parameters = TRUE, num.trees = 4000)
bart <- bartMachine(X = cbind(X_train,T_train),</pre>
               Y = Y_train, serialize = TRUE)
## predict treatment effects on test set
tau_cf <- predict(cf, X_test)</pre>
tau_bart <- predict(bart, X_test1) -</pre>
              predict(bart, X_test0)
## generate ITR from treatment effects
ITR_cf <- as.numeric(tau_cf > 0)
ITR_bart <- as.numeric(tau_bart > 0)
## calculate PAPE
PAPE_cf <- PAPE(T_test, ITR_cf, Y_test)</pre>
PAPE_bart <- PAPE(T_test, ITR_bart, Y_test)</pre>
## calculate PAPD
PAPD_cf_bart <- PAPD(T_test, ITR_cf, ITR_bart, Y_test)</pre>
## calculate AUPEC and plot it
AUPEC_cf <- AUPEC(T_test, tau_cf, Y_test)
plot(AUPEC_cf$vec)
```

Kosuke Imai (Harvard)

Simulations

- Atlantic Causal Inference Conference data analysis challenge
- Data generating process
 - 8 covariates from the Infant Health and Development Program (originally, 58 covariates and 4,302 observations)
 - \bullet population distribution = original empirical distribution
 - Model

$$Y_i(t) = \mu(X_i) + \tau(X_i)t + \sigma(X_i)\epsilon_i,$$

where t= 0, 1, $\epsilon_i \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(0,1)$, and

$$\begin{split} \mu(\mathsf{x}) &= -\sin(\Phi(\pi(\mathsf{x}))) + x_{43}, \\ \pi(\mathsf{x}) &= 1/[1 + \exp\{3(x_1 + x_{43} + 0.3(x_{10} - 1)) - 1\}], \\ \tau(\mathsf{x}) &= \xi(x_3x_{24} + (x_{14} - 1) - (x_{15} - 1)), \\ \sigma(\mathsf{x}) &= 0.25\sqrt{\mathbb{V}(\mu(\mathsf{x}) + \pi(\mathsf{x})\tau(\mathsf{x}))}. \end{split}$$

Two scenarios: large vs. small treatment effects ξ ∈ {2, 1/3}
Sample sizes: n ∈ {100, 500, 2, 000}

Results I: Fixed ITR

- f: Bayesian Additive Regression Tree (BART)
- No budget constraint, 20% constraint
- g: Causal Forest
- h: LASSO

		n = 100			n = 500			n = 2000		
Estimator	truth	cov.	bias	s.d.	cov.	bias	s.d.	cov.	bias	s.d.
Small effect										
$\hat{ au}_{f}$	0.066	94.3	0.005	0.124	96.2	0.001	0.053	95.1	0.001	0.026
$\hat{\tau}_f(c_{0.2})$	0.051	93.2	-0.002	0.109	94.4	0.001	0.046	95.2	0.002	0.021
$\widehat{\Gamma}_{f}$	0.053	95.3	0.001	0.106	95.1	0.001	0.045	94.8	-0.001	0.024
$\widehat{\Delta}_{0.2}(f,g)$	-0.022	94.0	0.006	0.122	95.4	0.002	0.051	96.0	0.000	0.026
$\widehat{\Delta}_{0.2}(f,h)$	-0.014	93.9	-0.001	0.131	94.9	-0.000	0.060	95.3	-0.000	0.030
Large effect										
$\hat{ au}_f$	0.430	94.7	-0.000	0.163	95.7	0.000	0.064	94.4	-0.000	0.031
$\hat{\tau}_f(c_{0.2})$	0.356	94.7	0.004	0.159	95.7	0.002	0.072	95.8	0.000	0.035
$\widehat{\Gamma}_{f}$	0.363	94.3	-0.005	0.130	94.9	0.003	0.058	95.7	0.000	0.029
$\widehat{\Delta}_{0.2}(f,g)$	-0.000	96.9	0.008	0.151	97.9	-0.002	0.073	98.0	-0.000	0.026
$\widehat{\Delta}_{0.2}(f,h)$	0.000	94.7	-0.004	0.140	97.7	-0.001	0.065	96.6	0.000	0.033

Kosuke Imai (Harvard)

Results II: Estimated ITR

- 5-fold cross fitting
- F: LASSO
- std. dev. for n = 500 is roughly half of the fixed n = 100 case

	n = 100				n = 500		n = 2000		
Estimator	cov.	bias	s.d.	cov.	bias	s.d.	cov.	bias	s.d.
Small effect									
$\hat{\lambda}_F$	96.4	0.001	0.216	96.7	0.002	0.100	97.2	0.002	0.046
$\hat{\tau}_{F}$	94.6	-0.002	0.130	95.5	-0.002	0.052	94.4	-0.000	0.027
$\hat{\tau}_F(c_{0.2})$	95.4	-0.003	0.120	95.4	-0.002	0.043	96.8	0.001	0.029
Γ _F	98.2	0.002	0.117	96.8	-0.001	0.048	95.9	0.001	0.001
Large effect									
$\hat{\lambda}_{H}$	96.9	-0.007	0.261	96.5	-0.003	0.125	97.3	0.001	0.062
$\hat{\tau}_{F}$	93.6	-0.000	0.171	93.0	0.000	0.093	95.3	0.001	0.041
$\hat{\tau}_F(c_{0.2})$	94.8	-0.002	0.170	96.2	-0.005	0.075	95.8	0.001	0.037
Γ _F	98.5	0.001	0.126	98.9	0.005	0.053	99.0	0.001	0.026

Application to the STAR Experiment

- Experiment involving 7,000 students across 79 schools
- Randomized treatments (kindergarden):
 - $T_i = 1$: small class (13–17 students)
 - 2 $T_i = 0$: regular class (22–25)
 - regular class with aid
- Outcome: SAT scores
- Literature on heterogeneous treatments in labor economics
- 10 covariates
 - 4 demographics: gender, race, birth month, birth year
 - 6 school characteristics: urban/rural, enrollment size, grade range, number of students on free lunch, percentage white, number of students on school buses
- Sample size: n = 1,911, 5-fold cross-fitting
- Average Treatment Effects:
 - SAT reading: 6.78 (s.e.=1.71)
 - SAT math: 5.78 (s.e.=1.80)

Results I: ITR Performance

	BART			Causal Forest			LASSO		
	est.	s.e.	treated	est.	s.e.	treated	est.	s.e.	treated
Fixed ITR									
No budget o	constrai	nt							
Reading	0	0	100%	-0.38	1.14	84.3%	-0.41	1.10	84.4%
Math	0.52	1.09	86.7	0.09	1.18	80.3	1.73	1.25	78.7
Writing	-0.32	0.72	92.7	-0.70	1.18	78.0	-0.30	1.26	80.0
Budget con	straint								
Reading	-0.89	1.30	20	0.66	1.23	20	-1.17	1.18	20
Math	0.70	1.25	20	2.57	1.29	20	1.25	1.32	20
Writing	2.60	1.17	20	2.98	1.18	20	0.28	1.19	20
Estimated I	Estimated ITR								
No budget o	No budget constraint								
Reading	0.19	0.37	99.3%	0.31	0.77	86.6%	0.32	0.53	87.6%
Math	0.92	0.75	84.7	2.29	0.80	79.1	1.52	1.60	75.2
Writing	1.12	0.86	88.0	1.43	0.71	67.4	0.05	1.37	74.8
Budget constraint									
Reading	1.55	1.05	20	0.40	0.69	20	-0.15	1.41	20
Math	2.28	1.15	20	1.84	0.73	20	1.50	1.48	20
Writing	2.31	0.66	20	1.90	0.64	20	-0.47	1.34	20

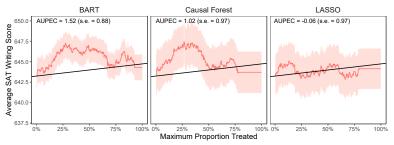
Kosuke Imai (Harvard)

Results II: Comparison between ML Algorithms

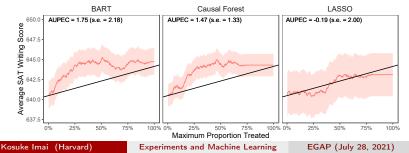
		Causal	BART				
	VS	BART	VS	LASSO	vs. LASSO		
	est.	95% CI	est.	95% CI	est.	95% CI	
Fixed ITR							
Math	1.55	[-0.35, 3.45]	1.83	[-0.50, 4.16]	0.28	[-2.39, 2.95]	
Reading	1.86	[-0.79, 4.51]	1.31	[-1.49, 4.11]	-0.55	[-4.02, 2.92]	
Writing	0.38	[-1.66, 2.42]	2.69	[-0.27, 5.65]	2.32	[-0.53, 5.15]	
Estimated	ITR						
Reading	-1.15	[-3.99, 1.69]	0.55	[-1.05, 2.15]	1.70	[-0.90, 4.30]	
Math	-0.43	[-2.57, 3.43]	0.34	[-1.32, 2.00]	0.77	[-1.99, 3.53]	
Writing	-0.41	[-1.63, 0.80]	2.37	[0.76, 3.98]	2.79	[1.32, 4.26]	

Results III: AUPEC

Fixed ITR



Estimated ITR



21/24

Extension to Heterogeneous Treatment Effects

- Inference for heterogeneous treatment effects discovered via a generic ML algorithm
 - cannot assume ML algorithms converge uniformly
 - avoid computationally intensive method (e.g., repeated cross-fitting)
 - use Neyman's repeated sampling framework for inference
- Setup:
 - Conditional Average Treatment Effect (CATE):

$$\tau(\mathsf{x}) = \mathbb{E}(Y_i(1) - Y_i(0) \mid \mathsf{X}_i = \mathsf{x})$$

• CATE estimation based on ML algorithm

$$s: \mathcal{X} \longrightarrow \mathcal{S} \subset \mathbb{R}$$

• Sorted Group Average Treatment Effect (GATE; Chernozhukov et al. 2019)

$$au_k \; := \; \mathbb{E}(Y_i(1) - Y_i(0) \mid c_{k-1}(s) \leq s(\mathsf{X}_i) < c_k(s))$$

22/24

for k = 1, 2, ..., K where c_k represents the cutoff between the (k - 1)th and kth groups

Kosuke Imai (Harvard) Experiments and Machine Learning EGAP (July 28, 2021)

GATE Estimation as ITR Evaluation

• A natural GATE estimator

$$\hat{\tau}_k = \frac{K}{n_1} \sum_{i=1}^n Y_i T_i \hat{f}_k(X_i) - \frac{K}{n_0} \sum_{i=1}^n Y_i (1 - T_i) \hat{f}_k(X_i),$$

where $\hat{f}_k(X_i) = 1\{s(X_i) \ge \hat{c}_k(s)\} - 1\{s(X_i) \ge \hat{c}_{k-1}(s)\}$ • Rewrite this as the PAPE:

$$\hat{\tau}_{k} = K \underbrace{\left\{ \frac{1}{n_{1}} \sum_{i=1}^{n} Y_{i} T_{i} \hat{f}_{k}(\mathsf{X}_{i}) + \frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i}) (1 - \hat{f}_{k}(\mathsf{X}_{i})) \right\}}_{\text{estimated PAV}} - \underbrace{\frac{1}{n_{0}} \sum_{i=1}^{n} Y_{i} (1 - T_{i})}_{\text{no one gets treated}} \right\}}_{\text{no one gets treated}}$$

• Our results can be extended to both sample-splitting and cross-fitting

Kosuke Imai (Harvard)

Experiments and Machine Learning

EGAP (July 28, 2021)

2021) 23/24

Concluding Remarks

- Use of ML algorithms is increasing in experimental studies
- Inference about ITRs has been largely model-based
 - We show how to experimentally evaluate ITRs
 - We incorporate budget constraints
 - No modeling assumption or asymptotic approximation is required
 - Complex ML algorithms can be used
 - Applicable to cross-fitting estimators
 - Simulations: good small sample performance
- Ongoing extensions
 - heterogeneous treatment effects using ML algorithms
 - dynamic ITRs
- Paper (JASA, forthcoming): https://arxiv.org/abs/1905.05389
- Software: evalITR available at CRAN