Experimental Identification of Causal Mechanisms

Kosuke Imai

Princeton University Joint work with Dutin Tingley and Teppei Yamamoto

October 17, 2009 Columbia EGAP Conference

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

EGAP Columbia 1 / 22

Experiments, Statistics, and Causal Mechanisms

- Causal inference is a central goal of social science
- Experiments as **gold standard** for estimating *causal effects*
- But, we really care about *causal mechanisms*
- A major criticism of experimentation (and statistics): it can only determine whether the treatment causes changes in the outcome, but not how and why
- Experiments are a **black box**
- Key Challenge: How can we design and analyze experiments to identify causal mechanisms?

Overview of the Talk

- Show the limitations of common approaches
- Propose alternative experimental designs
- What is a minimum set of assumptions required for identification under each design?
- How much can we learn without the key identification assumptions under each design?
- Identification of causal mechanisms is possible but difficult
- Replace statistical assumptions with design assumptions
- Roles of creativity and technological developments

- Quantities of interest: Direct and indirect effects
- Fast growing methodological literature

Formal Statistical Framework of Causal Inference

- Binary treatment: $T_i \in \{0, 1\}$
- Mediator: $M_i \in \mathcal{M}$
- Outcome: $Y_i \in \mathcal{Y}$
- Observed covariates: $X_i \in \mathcal{X}$
- Potential mediators: $M_i(t)$ where $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$ where $Y_i = Y_i(T_i, M_i(T_i))$
- Fundamental problem of causal inference: Only one potential value is observed
- If $T_i = 1$, then $M_i(1)$ is observed but $M_i(0)$ is not
- If $T_i = 0$ and $M_i(0) = 0$, then $Y_i(0,0)$ is observed but $Y_i(1,0), Y_i(0,m)$, and $Y_i(1,m)$ are not where $m \neq 0$

```
Kosuke Imai (Princeton)
```

Experiments and Causal Mechanisms

EGAP Columbia 5 / 22

Defining and Interpreting Indirect Effects

Total causal effect:

$$au_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

• Indirect (causal mediation) effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Change $M_i(0)$ to $M_i(1)$ while holding the treatment constant at t
- Effect of a change in M_i on Y_i that would be induced by treatment
- Fundamental problem of causal mechanisms:

For each unit *i*, $Y_i(t, M_i(t))$ is observable but $Y_i(t, M_i(1 - t))$ is not even observable

Defining and Interpreting Direct Effects

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Change T_i from 0 to 1 while holding the mediator constant at $M_i(t)$
- Causal effect of T_i on Y_i , holding mediator constant at its potential value that would be realized when $T_i = t$
- Total effect = indirect effect + direct effect:

$$\tau_i = \frac{1}{2} \{ \delta_i(0) + \delta_i(1) + \zeta_i(0) + \zeta_i(1) \}$$

$$= \delta_i + \zeta_i \quad \text{if } \delta_i = \delta_i(0) = \delta_i(1) \text{ and } \zeta_i = \zeta_i(0) = \zeta_i(1)$$

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

EGAP Columbia 7 / 22

Mechanisms, Manipulations, and Interactions

Mechanisms

• Indirect effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

• Counterfactuals about treatment-induced mediator values

Manipulations

• Controlled direct effects:

$$\xi_i(t, m, m') \equiv Y_i(t, m) - Y_i(t, m')$$

• Causal effect of directly manipulating the mediator under $T_i = t$

Interactions

• Interaction effects:

$$\xi(1, m, m') - \xi(0, m, m') \neq 0$$

• Doesn't imply the existence of a mechanism

Identification under Single Experiment Approach

- Sequential ignorability yields nonparametric identification
- Linear regressions with no interaction: Baron-Kenny
- Untestable assumption
- How much can we learn without sequential ignorability?
- Sharp bounds on indirect effects: even sign cannot be identified
- Sensitivity analysis at best: How large a departure from sequential ignorability must occur for the conclusions to no longer hold?
- Can we replace the statistical assumption with the design assumption?
- Can we design experiments to help identify causal mechanisms?

Sensitivity Analysis

 $ACME(\rho)$

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

EGAP Columbia 11 / 22

Causal Chain Approach

Experiment 1 1) Randomize treatment 2) Measure mediator Different sample Experiment 2 1) Measure treatment (though often not done) 2) Randomize mediator 3) Measure outcome

Assumption Satisfied

- Randomization of treatment in the first experiment but not the second
- Randomization of mediator given the treatment in the second experiment

Claim in the Literature

• Two statistically significant effects identify the causal mechanism without any additional assumption

Key Identification Assumptions

- Identification requires 3 more and untestable assumptions!
- No manipulation effect: Manipulation of mediator has no direct effect on outcome other than through the mediator value
- "Puppet" assumption: a good puppeteer can convince the audience that his puppets move under their own volition
- No interaction: For any $m \neq m'$,

$$Y_i(1,m) - Y_i(1,m') = Y_i(0,m) - Y_i(0,m')$$

- Changing the mediator under the treatment produces same effect as changing mediator under the control
- No selection bias w.r.t. the treatment in second experiment

```
Kosuke Imai (Princeton) E
```

Experiments and Causal Mechanisms

EGAP Columbia 13 / 22

Identification Analysis and Parallel Design

- What happens if we do not make the no interaction assumption and the no selection bias assumption
- Bounds are narrower than those of single experiment approach
- The sign of indirect effect is not identified except rare cases
- Parallel Design: Bounds are always narrower and sometimes substantially improved

A Numerical Illustration

- Why aren't two statistically significant effects sufficient?
- Consider the following example:

Prop.	$M_{i}(1)$	$M_{i}(0)$	$Y_{i}(t, 1)$	$Y_{i}(t, 0)$	$\delta_i(t)$
0.3	1	0	0	1	-1
0.3	0	0	1	0	0
0.1	0	1	0	1	1
0.3	1	1	1	0	0

- $\mathbb{E}(M_i(1) M_i(0)) = 0.2$ and $\mathbb{E}(Y_i(t, 1) Y_i(t, 0)) = 0.2$
- But $\bar{\delta}(t) = -0.2$

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

EGAP Columbia 15 / 22

Comparison of Assumptions

	Single	Causal	l
Assumptions	Experiment	Chain	Parallel
Random Treatment	\bigcirc	\bigcirc	
Sequential Ignorability (SI)	\bigcirc		
Random Mediator		\bigcirc	
No Manipulation Effect		(
No Interaction Effect		\bigcirc	i 💮

- Single experiment approach requires the SI assumption
- Causal chain approach replaces it with other untestable assumptions that are unrelated to experimental designs
- Parallel design improves causal chain approach
- Can we come up with a more powerful design?

Crossover Design

Crossover Encouragement Design

Experiment 1

- 1) Randomize treatment
- 2) Measure mediator

3) Measure outcome (optional)

Same sample

Experiment 2

1) Fix treatment opposite Experiment 1

2) Randomly encourage mediator to level observed in Experiment 1

3) Measure outcome

Motivation

• Imperfect and subtle manipulation

Key Identifying Assumptions

- No Defier: encouragement doesn't discourage anyone
- No Carryover Effect
- No Manipulation Effect

Identification Analysis

- Identify indirect effects for "pliable" units
- Can check carryover effect

Kosuke Imai (Princeton)

Experiments and Causal Mechanisms

Comparison of Assumptions

Assumptions	Crossover	Crossover Encouragement
Random Treatment	\bigcirc	\odot
Sequential Ignorability		
Random Mediator		
Random Encouragement		\bigcirc
No Manipulation Effect	$\overline{\bigcirc}$	\bigcirc
No Interaction Effect		
No Carryover Effect	$\stackrel{(\cdot)}{\bigcirc}$	$\overline{\bigcirc}$
No Defier		\bigcirc

- Crossover designs are most powerful
- No carryover effect: longer washout period
- Imperfect manipulation indirect effect for pliable units
- Subtle and indirect encouragement less manipulation effect

Kosuke Imai (Princeton)	Experiments and Causal Mechanisms	EGAP Columbia	19 / 22

Example from Behavioral Neuroscience

Question: What mechanism links low offers in an ultimatum game with "irrational" rejections?

• Two brain regions more active when unfair offer received (single experiment design)

Design solution: manipulate mechanisms with TMS

• Knoch et al. use TMS to manipulate — turn off — one of these regions, and then observes choices (parallel design)

We discuss the applicability of each design and the credibility of its identification assumptions in this context

Concluding Remarks

- Identification of causal mechanisms is difficult but is possible
- Additional assumptions are required
- Three possible strategies:
 - Single experiment design
 - Parallel design
 - Orossover (encouragement) design
- Statistical assumptions: sequential ignorability, no interaction
- Design assumptions: no manipulation, no carryover effect
- Experimenters' creativity and technological development to improve the validity of these design assumptions

Kosuke Imai (Princeton)	Experiments and Causal Mechanisms	EGAP Columbia	21 / 22

Papers and Software

- "Experimental Identification of Causal Mechanisms"
- "Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects."
- "A General Approach to Causal Mediation Analysis."
- "Causal Mediation Analysis in R."
- All available at http://imai.princeton.edu/projects/mechanisms.html
- mediation: R package for causal mediation analysis
- Available at

http://cran.r-project.org/web/packages/mediation/