Unpacking the Black-Box of Causality: Learning about Causal Mechanisms from Experimental and Observational Studies

Kosuke Imai

Princeton University

February 23, 2012

L. Keele (Penn State)

Joint work with

D. Tingley (Harvard) T. Yamamoto (MIT)

* 伊ト * ヨト * ヨト

- Causal inference is a central goal of scientific research
- Scientists care about causal mechanisms, not just causal effects

< 6 b

- Causal inference is a central goal of scientific research
- Scientists care about causal mechanisms, not just causal effects
- Randomized experiments often only determine whether the treatment causes changes in the outcome
- Not how and why the treatment affects the outcome

- Causal inference is a central goal of scientific research
- Scientists care about causal mechanisms, not just causal effects
- Randomized experiments often only determine whether the treatment causes changes in the outcome
- Not how and why the treatment affects the outcome
- Common criticism of experiments and statistics:

black box view of causality

く 伊 ト く ヨ ト く ヨ ト

- Causal inference is a central goal of scientific research
- Scientists care about causal mechanisms, not just causal effects
- Randomized experiments often only determine whether the treatment causes changes in the outcome
- Not how and why the treatment affects the outcome
- Common criticism of experiments and statistics:

black box view of causality

- Qualitative research uses process tracing
- **Question:** How can quantitative research be used to identify causal mechanisms?

・ 同 ト ・ ヨ ト ・ ヨ ト

• **Goal:** Convince you that statistics *can* be useful for learning about causal mechanisms

Э

< 回 > < 三 > < 三 >

Overview of the Talk

- Goal: Convince you that statistics can be useful for learning about causal mechanisms
- Method: Causal Mediation Analysis

Direct and indirect effects; intermediate and intervening variables

Kosu	ke li	mai (Princeto	n)

A 1

Overview of the Talk

- **Goal:** Convince you that statistics *can* be useful for learning about causal mechanisms
- Method: Causal Mediation Analysis

Direct and indirect effects; intermediate and intervening variables

• **New tools:** framework, estimation algorithm, sensitivity analysis, research designs, easy-to-use software

Kosuke Imai (Princeton)

イロト イポト イヨト イヨト

Causal Mediation Analysis in American Politics

- The political psychology literature on media framing
- Nelson et al. (APSR, 1998)

4/27

Causal Mediation Analysis in Comparative Politics

Resource curse thesis

Causes of civil war: Fearon and Laitin (APSR, 2003)

Kosuke Imai (Princeton)
---------------	------------

A 1

Causal Mediation Analysis in International Relations

- The literature on international regimes and institutions
- Krasner (International Organization, 1982)

Power and interests are mediated by regimes

	Kosuke	Imai (Princet	ton)
--	--------	--------	---------	------

Current Practice in Political Science

• Regression:

$$Y_i = \alpha + \beta T_i + \gamma M_i + \delta X_i + \epsilon_i$$

- Each coefficient is interpreted as a causal effect
- Sometimes, it's called marginal effect
- Idea: increase T_i by one unit while holding M_i and X_i constant
- But, if you change T_i , that may also change M_i
- The Problem: Post-treatment bias
- Usual advice: only include causally prior (or pre-treatment) variables
- But, then you lose causal mechanisms!

・ 同 ト ・ ヨ ト ・ ヨ ト

- Units: *i* = 1, ..., *n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Pre-treatment covariates: X_i

・ 同 ト ・ ヨ ト ・ ヨ ト

- Units: *i* = 1, ..., *n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Pre-treatment covariates: X_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$
- Observed outcome: $Y_i = Y_i(T_i)$

* 伊 ト * ヨ ト * ヨ ト

- Units: *i* = 1, ..., *n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Pre-treatment covariates: X_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$
- Observed outcome: $Y_i = Y_i(T_i)$

Voters	Contact	Turr	nout	Age	Party ID
i	T_i	$Y_{i}(1)$	$Y_{i}(0)$	X_i	X_i
1	1	1	?	20	D
2	0	?	0	55	R
÷	÷	÷	÷	÷	÷
п	1	0	?	62	D

* 伊 ト * ヨ ト * ヨ ト

- Units: *i* = 1, ..., *n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Pre-treatment covariates: X_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$
- Observed outcome: $Y_i = Y_i(T_i)$

Voters	Contact	Turr	nout	Age	Party ID
i	T_i	$Y_{i}(1)$	$Y_{i}(0)$	X_i	X_i
1	1	1	?	20	D
2	0	?	0	55	R
÷	÷	÷	÷	÷	÷
п	1	0	?	62	D

• Causal effect: $Y_i(1) - Y_i(0)$

Problem: only one potential outcome can be observed per unit

- Binary treatment: *T_i*
- Pre-treatment covariates: X_i

-

A = 1 + 4
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Binary treatment: *T_i*
- Pre-treatment covariates: X_i
- Potential mediators: $M_i(t)$
- Observed mediator: $M_i = M_i(T_i)$

- Th

- Binary treatment: *T_i*
- Pre-treatment covariates: X_i

- Potential mediators: $M_i(t)$
- Observed mediator: $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$
- Observed outcome: $Y_i = Y_i(T_i, M_i(T_i))$

4 1 1 1 4

- Binary treatment: *T_i*
- Pre-treatment covariates: X_i
- Potential mediators: $M_i(t)$
- Observed mediator: $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$
- Observed outcome: $Y_i = Y_i(T_i, M_i(T_i))$
- Again, only one potential outcome can be observed per unit

くぼと くきとくきょ

Causal Mediation Effects

• Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

Kosuke Imai (Princeton)	Causal Mechanisms	Dartmouth (February 23, 2012)	10

イロト イロト イミト イミト

э

୬ ଏ ୯ 10 / 27

Causal Mediation Effects

• Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

• Causal mediation (Indirect) effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

э

Sac

く 伊 ト く ヨ ト く ヨ ト

Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

• Causal mediation (Indirect) effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Causal effect of the treatment-induced change in *M_i* on *Y_i*
- Change the mediator from M_i(0) to M_i(1) while holding the treatment constant at t
- Represents the mechanism through M_i

Total Effect = Indirect Effect + Direct Effect

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

		- 미 >	\mathcal{O} Q
Kosuke Imai (Princeton)	Causal Mechanisms	Dartmouth (February 23, 2012)	11/2

Total Effect = Indirect Effect + Direct Effect

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Causal effect of T_i on Y_i , holding mediator constant at its potential value that would be realized when $T_i = t$
- Change the treatment from 0 to 1 while holding the mediator constant at M_i(t)
- Represents all mechanisms other than through M_i

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Causal effect of T_i on Y_i , holding mediator constant at its potential value that would be realized when $T_i = t$
- Change the treatment from 0 to 1 while holding the mediator constant at *M_i(t)*
- Represents all mechanisms other than through *M_i*
- Total effect = mediation (indirect) effect + direct effect:

$$\tau_i = \delta_i(t) + \zeta_i(1-t) = \frac{1}{2} \{ \delta_i(0) + \delta_i(1) + \zeta_i(0) + \zeta_i(1) \}$$

イロト イポト イヨト イヨト 二日

What Does the Observed Data Tell Us?

• Quantity of Interest: Average causal mediation effects (ACME)

$$\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

3

Sac

・ 同 ト ・ ヨ ト ・ ヨ ト

• Quantity of Interest: Average causal mediation effects (ACME)

 $\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$

• Average direct effects $(\bar{\zeta}(t))$ are defined similarly

• Quantity of Interest: Average causal mediation effects (ACME)

 $\overline{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$

- Average direct effects $(\bar{\zeta}(t))$ are defined similarly
- $Y_i(t, M_i(t))$ is observed but $Y_i(t, M_i(t'))$ can never be observed
- We have an identification problem

• Quantity of Interest: Average causal mediation effects (ACME)

 $\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$

- Average direct effects $(\bar{\zeta}(t))$ are defined similarly
- $Y_i(t, M_i(t))$ is observed but $Y_i(t, M_i(t'))$ can never be observed
- We have an identification problem
- \implies Need additional assumptions to make progress

イロト イポト イヨト イヨト 二日

Identification under Sequential Ignorability

• Proposed identification assumption: Sequential Ignorability (SI)

$$\{Y_i(t',m),M_i(t)\} \perp T_i \mid X_i = x, \qquad (1)$$

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x$$
 (2)

イロト イポト イヨト イヨト

Identification under Sequential Ignorability

• Proposed identification assumption: Sequential Ignorability (SI)

$$\{Y_i(t',m),M_i(t)\} \perp T_i \mid X_i = x, \qquad (1)$$

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x \qquad (2)$$

- (1) is guaranteed to hold in a standard experiment
- (2) does **not** hold unless X_i includes all confounders
- Limitation: X_i cannot include post-treatment confounders

- B- b-

Identification under Sequential Ignorability

Proposed identification assumption: Sequential Ignorability (SI)

$$\{Y_i(t',m),M_i(t)\} \perp T_i \mid X_i = x, \qquad (1)$$

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x \qquad (2)$$

- (1) is guaranteed to hold in a standard experiment
- (2) does **not** hold unless X_i includes all confounders
- Limitation: X_i cannot include post-treatment confounders

Under SI, ACME is nonparametrically identified:

$$\int \int \mathbb{E}(Y_i \mid M_i, T_i = t, X_i) \{ dP(M_i \mid T_i = 1, X_i) - dP(M_i \mid T_i = 0, X_i) \} dP(X_i)$$

Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

• How and why do ethnic cues affect immigration attitudes?

Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

- How and why do ethnic cues affect immigration attitudes?
- Theory: Anxiety transmits the effect of cues on attitudes

Kosuke Imai	(Princeton)	Causal Mechanisms

- L

A 1

Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

- How and why do ethnic cues affect immigration attitudes?
- Theory: Anxiety transmits the effect of cues on attitudes

• ACME = Average difference in immigration attitudes due to the change in anxiety induced by the media cue treatment
Example: Anxiety, Group Cues and Immigration

Brader, Valentino & Suhat (2008, AJPS)

- How and why do ethnic cues affect immigration attitudes?
- Theory: Anxiety transmits the effect of cues on attitudes

- ACME = Average difference in immigration attitudes due to the change in anxiety induced by the media cue treatment
- Sequential ignorability = No unobserved covariate affecting both anxiety and immigration attitudes

$$\begin{aligned} \mathbf{M}_i &= \alpha_2 + \beta_2 \mathbf{T}_i + \boldsymbol{\xi}_2^\top \mathbf{X}_i + \boldsymbol{\epsilon}_{i2}, \\ \mathbf{Y}_i &= \alpha_3 + \beta_3 \mathbf{T}_i + \gamma \mathbf{M}_i + \boldsymbol{\xi}_3^\top \mathbf{X}_i + \boldsymbol{\epsilon}_{i3}. \end{aligned}$$

э

Sac

< 回 > < 三 > < 三 >

$$\begin{aligned} \mathbf{M}_i &= \alpha_2 + \beta_2 \mathbf{T}_i + \boldsymbol{\xi}_2^\top \mathbf{X}_i + \boldsymbol{\epsilon}_{i2}, \\ \mathbf{Y}_i &= \alpha_3 + \beta_3 \mathbf{T}_i + \gamma \mathbf{M}_i + \boldsymbol{\xi}_3^\top \mathbf{X}_i + \boldsymbol{\epsilon}_{i3}. \end{aligned}$$

- Fit two least squares regressions separately
- Use product of coefficients $(\hat{\beta}_2 \hat{\gamma})$ to estimate ACME

$$\begin{aligned} \mathbf{M}_i &= \alpha_2 + \beta_2 \mathbf{T}_i + \boldsymbol{\xi}_2^\top \mathbf{X}_i + \boldsymbol{\epsilon}_{i2}, \\ \mathbf{Y}_i &= \alpha_3 + \beta_3 \mathbf{T}_i + \gamma \mathbf{M}_i + \boldsymbol{\xi}_3^\top \mathbf{X}_i + \boldsymbol{\epsilon}_{i3}. \end{aligned}$$

- Fit two least squares regressions separately
- Use product of coefficients $(\hat{\beta}_2 \hat{\gamma})$ to estimate ACME
- The method is valid under SI
- Can be extended to LSEM with interaction terms

200

- E - E

$$\begin{aligned} \mathbf{M}_i &= \alpha_2 + \beta_2 \mathbf{T}_i + \boldsymbol{\xi}_2^\top \mathbf{X}_i + \boldsymbol{\epsilon}_{i2}, \\ \mathbf{Y}_i &= \alpha_3 + \beta_3 \mathbf{T}_i + \gamma \mathbf{M}_i + \boldsymbol{\xi}_3^\top \mathbf{X}_i + \boldsymbol{\epsilon}_{i3}. \end{aligned}$$

- Fit two least squares regressions separately
- Use product of coefficients $(\hat{\beta}_2 \hat{\gamma})$ to estimate ACME
- The method is valid under SI
- Can be extended to LSEM with interaction terms
- Problem: Only valid for the simplest LSEMs

200

Proposed General Estimation Algorithm

Model outcome and mediator

- Outcome model: $p(Y_i | T_i, M_i, X_i)$
- Mediator model: $p(M_i | T_i, X_i)$
- These models can be of any form (linear or nonlinear, semi- or nonparametric, with or without interactions)

伺下 イヨト イヨト

Proposed General Estimation Algorithm

- Model outcome and mediator
 - Outcome model: $p(Y_i | T_i, M_i, X_i)$
 - Mediator model: $p(M_i | T_i, X_i)$
 - These models can be of any form (linear or nonlinear, semi- or nonparametric, with or without interactions)
- **2** Predict mediator for both treatment values $(M_i(1), M_i(0))$
- Solution Predict outcome by first setting $T_i = 1$ and $M_i = M_i(0)$, and then $T_i = 1$ and $M_i = M_i(1)$
- Compute the average difference between two outcomes to obtain a consistent estimate of ACME

Proposed General Estimation Algorithm

- Model outcome and mediator
 - Outcome model: $p(Y_i | T_i, M_i, X_i)$
 - Mediator model: $p(M_i | T_i, X_i)$
 - These models can be of any form (linear or nonlinear, semi- or nonparametric, with or without interactions)
- **2** Predict mediator for both treatment values $(M_i(1), M_i(0))$
- Solution Predict outcome by first setting $T_i = 1$ and $M_i = M_i(0)$, and then $T_i = 1$ and $M_i = M_i(1)$
- Compute the average difference between two outcomes to obtain a consistent estimate of ACME
- Monte Carlo or bootstrap to estimate uncertainty

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Original method: Product of coefficients with the Sobel test

Original method: Product of coefficients with the Sobel test
 Valid only when both models are linear w/o *T*-*M* interaction

(which they are not)

- Original method: Product of coefficients with the Sobel test
 Valid only when both models are linear w/o *T*-*M* interaction (which they are not)
- Our method: Calculate ACME using our general algorithm

- Original method: Product of coefficients with the Sobel test
 Valid only when both models are linear w/o *T*-*M* interaction (which they are not)
- Our method: Calculate ACME using our general algorithm

	Product of	Average Causal
Outcome variables	Coefficients	Mediation Effect (δ)
Decrease Immigration	.347	.105
$\overline{\delta}(1)$	[0.146, 0.548]	[0.048, 0.170]
Support English Only Laws	.204	.074
$\overline{\delta}(1)$	[0.069, 0.339]	[0.027, 0.132]
Request Anti-Immigration Information	.277	.029
$\bar{\delta}(1)$	[0.084, 0.469]	[0.007, 0.063]
Send Anti-Immigration Message	.276	.086
$\bar{\delta}(1)$	[0.102, 0.450]	[0.035, 0.144]

17/27

- Even in experiments, SI is required to identify mechanisms
- SI is often too strong and yet not testable

- Even in experiments, SI is required to identify mechanisms
- SI is often too strong and yet not testable
- Need to assess the robustness of findings via sensitivity analysis
- Question: How large a departure from the key assumption must occur for the conclusions to no longer hold?

イロト イポト イヨト イヨト

- Even in experiments, SI is required to identify mechanisms
- SI is often too strong and yet not testable
- Need to assess the robustness of findings via sensitivity analysis
- Question: How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Sensitivity analysis by assuming

$$\{Y_i(t',m),M_i(t)\}\perp\!\!\!\perp T_i\mid X_i=x$$

but not

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x$$

イロト イポト イヨト イヨト

- Even in experiments, SI is required to identify mechanisms
- SI is often too strong and yet not testable
- Need to assess the robustness of findings via sensitivity analysis
- Question: How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Sensitivity analysis by assuming

$$\{Y_i(t',m), M_i(t)\} \perp T_i \mid X_i = x$$

but not

$$Y_i(t',m) \perp M_i(t) \mid T_i = t, X_i = x$$

• Possible existence of unobserved pre-treatment confounder

Nusuke imai (Frincelon)	Kosuke	lmai ((Princet	(on)
-------------------------	--------	--------	----------	------

• Sensitivity parameter: $\rho \equiv Corr(\epsilon_{i2}, \epsilon_{i3})$

3

DQC

イロト イロト イヨト イヨト

- Sensitivity parameter: $\rho \equiv \text{Corr}(\epsilon_{i2}, \epsilon_{i3})$
- Sequential ignorability implies $\rho = 0$
- Set ρ to different values and see how ACME changes

く 伊 ト く ヨ ト く ヨ ト

- Sensitivity parameter: $\rho \equiv \text{Corr}(\epsilon_{i2}, \epsilon_{i3})$
- Sequential ignorability implies $\rho = 0$
- When do my results go away completely?

- Sensitivity parameter: $\rho \equiv \text{Corr}(\epsilon_{i2}, \epsilon_{i3})$
- Sequential ignorability implies $\rho = 0$
- Set ρ to different values and see how ACME changes
- When do my results go away completely?
- $\bar{\delta}(t) = 0$ if and only if $\rho = \text{Corr}(\epsilon_{i1}, \epsilon_{i2})$ where

$$Y_i = \alpha_1 + \beta_1 T_i + \epsilon_{i1}$$

• Easy to estimate from the regression of Y_i on T_i :

イロト イポト イヨト イヨト

- Sensitivity parameter: $\rho \equiv \text{Corr}(\epsilon_{i2}, \epsilon_{i3})$
- Sequential ignorability implies $\rho = 0$
- Set ρ to different values and see how ACME changes
- When do my results go away completely?
- $\bar{\delta}(t) = 0$ if and only if $\rho = \text{Corr}(\epsilon_{i1}, \epsilon_{i2})$ where

$$Y_i = \alpha_1 + \beta_1 T_i + \epsilon_{i1}$$

- Easy to estimate from the regression of Y_i on T_i :
- Alternative interpretation based on R²: How big does the effects of unobserved confounders have to be in order for my results to go away?

Kosuke Imai (Princeton)

Causal Mechanisms

イロト イポト イヨト イヨト 二日

Example: Sensitivity Analysis

• ACME > 0 as long as the error correlation is less than 0.39 (0.30 with 95% CI)

Kosuke Imai (Princeton)

Causal Mechanisms

20 / 27 Dartmouth (February 23, 2012)

Sac

- Without sequential ignorability, standard experimental design lacks identification power
- Even the sign of ACME is not identified

- Without sequential ignorability, standard experimental design lacks identification power
- Even the sign of ACME is not identified
- Need to develop alternative research design strategies for more credible inference
- New experimental designs: Possible when the mediator can be directly or indirectly manipulated
- Observational studies: use experimental designs as templates

くロ と く 戸 と く 三 と 一

- Recall ACME can be identified if we observe $Y_i(t', M_i(t))$
- Get $M_i(t)$, then switch T_i to t' while holding $M_i = M_i(t)$

3

- Recall ACME can be identified if we observe $Y_i(t', M_i(t))$
- Get $M_i(t)$, then switch T_i to t' while holding $M_i = M_i(t)$

• Crossover design:

- Round 1: Conduct a standard experiment
- Round 2: Change the treatment to the opposite status but fix the mediator to the value observed in the first round

- Recall ACME can be identified if we observe $Y_i(t', M_i(t))$
- Get $M_i(t)$, then switch T_i to t' while holding $M_i = M_i(t)$

• Crossover design:

- Round 1: Conduct a standard experiment
- Round 2: Change the treatment to the opposite status but fix the mediator to the value observed in the first round
- Very powerful identifies mediation effects for each subject
- Must assume no carryover effect: Round 1 doen't affect Round 2
- Can be made plausible by design

Example: Labor Market Discrimination Experiment

Bertrand & Mullainathan (2004, AER)

- Treatment: Black vs. White names on CVs
- Mediator: Perceived qualifications of applicants
- Outcome: Callback from employers

く 伊 ト く ヨ ト く ヨ ト

Bertrand & Mullainathan (2004, AER)

- Treatment: Black vs. White names on CVs
- Mediator: Perceived qualifications of applicants
- Outcome: Callback from employers
- Quantity of interest: Direct effects of (perceived) race
- Would Jamal get a callback if his name were Greg but his qualifications stayed the same?

Bertrand & Mullainathan (2004, AER)

- Treatment: Black vs. White names on CVs
- Mediator: Perceived qualifications of applicants
- Outcome: Callback from employers
- Quantity of interest: Direct effects of (perceived) race
- Would Jamal get a callback if his name were Greg but his qualifications stayed the same?
- Round 1: Send Jamal's actual CV and record the outcome
- Round 2: Send his CV as Greg and record the outcome
- Assumptions are plausible

Designing Observational Studies

• Key difference between experimental and observational studies: treatment assignment

- Key difference between experimental and observational studies: treatment assignment
- Sequential ignorability:
 - Ignorability of treatment given covariates
 - Ignorability of mediator given treatment and covariates
- Both (1) and (2) are suspect in observational studies

伺下 イヨト イヨト

- Key difference between experimental and observational studies: treatment assignment
- Sequential ignorability:
 - Ignorability of treatment given covariates
 - Ignorability of mediator given treatment and covariates
- Both (1) and (2) are suspect in observational studies
- Statistical control: matching, propensity scores, etc.
- Search for quasi-randomized treatments: "natural" experiments

- Key difference between experimental and observational studies: treatment assignment
- Sequential ignorability:
 - Ignorability of treatment given covariates
 - Ignorability of mediator given treatment and covariates
- Both (1) and (2) are suspect in observational studies
- Statistical control: matching, propensity scores, etc.
- Search for quasi-randomized treatments: "natural" experiments
- How can we design observational studies?
- Experiments can serve as templates for observational studies

・ロト ・ 同ト ・ ヨト ・ ヨト

- Estimation of incumbency advantages goes back to 1960s
- Why incumbency advantage? Scaring off quality challenger

・ 戸 ト ・ 三 ト ・

- Estimation of incumbency advantages goes back to 1960s
- Why incumbency advantage? Scaring off quality challenger
- Use of cross-over design (Levitt and Wolfram, LSQ)
 1st Round: two non-incumbents in an open seat
 - 2nd Round: same candidates with one being an incumbent

く 伊 ト く ヨ ト く ヨ ト
- Estimation of incumbency advantages goes back to 1960s
- Why incumbency advantage? Scaring off quality challenger
- Use of cross-over design (Levitt and Wolfram, LSQ)
 1st Round: two non-incumbents in an open seat
 2nd Round: same candidates with one being an incumbent
- Assumption: challenger quality (mediator) stays the same
- Estimation of direct effect is possible

イロト イポト イヨト イヨト

Concluding Remarks

- Quantitative analysis can be used to identify causal mechanisms!
- Estimate causal mediation effects rather than marginal effects
- Wide applications across social and natural science disciplines

く 伊 ト く ヨ ト く ヨ ト

Concluding Remarks

- Quantitative analysis can be used to identify causal mechanisms!
- Estimate causal mediation effects rather than marginal effects
- Wide applications across social and natural science disciplines
- Under standard research designs, sequential ignorability must hold for identification of causal mechanisms
- Under SI, a general, flexible estimation method is available
- SI can be probed via sensitivity analysis
- Easy-to-use software mediation is available in R and STATA
- Credible inference is possible under alternative research designs

・ 同 ト ・ ヨ ト ・ ヨ ト

Concluding Remarks

- Quantitative analysis can be used to identify causal mechanisms!
- Estimate causal mediation effects rather than marginal effects
- Wide applications across social and natural science disciplines
- Under standard research designs, sequential ignorability must hold for identification of causal mechanisms
- Under SI, a general, flexible estimation method is available
- SI can be probed via sensitivity analysis
- Easy-to-use software mediation is available in R and STATA
- Credible inference is possible under alternative research designs
- Ongoing research: multiple mediators, instrumental variables

The project website for papers and software:

http://imai.princeton.edu/projects/mechanisms.html

Email for comments and suggestions:

kimai@Princeton.Edu

Э