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Causal Heterogeneity and Interaction Effects

1 Moderation:

How does the effect of a treatment vary across individuals?
Interaction between the treatment variable and pre-treatment
covariates

2 Causal interaction:

What combination of treatments is efficacious?
Interaction among multiple treatment variables

3 Individualized treatment regimes:

What treatment combination is optimal for a given individual?
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Conjoint Analysis

Survey experiments with a factorial design

Respondents evaluate several pairs of randomly selected profiles
defined by multiple factors

Social scientists use it to analyze multidimensional preferences

Example: Immigration preference (Hopkins and Hainmueller 2014)

representative sample of 1,407 American adults
each respondent evaluates 5 pairs of immigrant profiles
gender2, education7, origin10, experience4, plan4, language4,
profession11, application reason3, prior trips5

What combinations of immigrant characteristics do Americans prefer?
High dimension: over 1 million treatment combinations

Methodological challenges:

Many interaction effects  false positives, difficulty of interpretation
Very few applied researchers study interaction
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The Overview of the Talk

1 New causal estimand: Average Marginal Interaction Effect (AMIE)

relative magnitude does not depend on baseline condition
intuitive interpretation even for high dimension
estimation using ANOVA with weighted zero-sum constraints
regularization done directly on AMIEs

2 Comparison with the conventional interaction effect:

lack of invariance to the choice of baseline condition
difficulty of interpretation for higher-order interaction

3 Reanalysis of the conjoint analysis on ethnic voting in Africa
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Factorial Experiments with Two Treatments

Two factorial treatments (e.g., gender and race):

A ∈ A = {a0, a1, . . . , aLA−1}
B ∈ B = {b0, b1, . . . , bLB−1}

Assumption: Full factorial design
1 Randomization of treatment assignment

{Y (a`, bm)}a`∈A,bm∈B ⊥⊥ {A,B}

2 Non-zero probability for all treatment combination

Pr(A = a`,B = bm) > 0 for all a` ∈ A and bm ∈ B

Fractional factorial design not allowed
1 Use a small non-zero assignment probability
2 Focus on a subsample
3 Combine treatments

Egami and Imai (Princeton) Causal Interaction Cornell (Oct. 18, 2017) 5 / 22



Main Causal Estimands in Factorial Experiments

1 Average Combination Effect (ACE):

Average effect of treatment combination (A,B) = (a`, bm) relative to
the baseline condition (A,B) = (a0, b0)

τAB(a`, bm; a0, b0) = E{Y (a`, bm)− Y (a0, b0)}

Effect of being Asian male

2 Average Marginal Effect (AME; Hainmueller et al. 2014; Dasgupta et al.
2015):

Average effect of treatment A = a` relative to the baseline condition
A = a0 averaging over the other treatment B

ψA(a`, a0) =

∫
E{Y (a`,B)− Y (a0,B)}dF (B)

Effect of being male averaging over race
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The New Causal Interaction Effect

Average Marginal Interaction Effect (AMIE):

πAB(a`, bm; a0, b0) = τAB(a`, bm; a0, b0)︸ ︷︷ ︸
ACE of (a`, bm)

− ψA(a`, a0)︸ ︷︷ ︸
AME of a`

−ψB(bm, b0)︸ ︷︷ ︸
AME of bm

Interpretation: additional effect induced by A = a` and B = bm
together beyond the separate effect of A = a` and that of B = bm

Additional effect of being Asian male beyond the sum of separate
effects for being male and being Asian

Decomposition of ACE: τAB = ψA + ψB + πAB

Invariance: the relative magnitude of AMIE does not depend on the
choice of baseline condition

AMIEs depend on the distribution of treatment assignment:
1 specified by one’s experimental design
2 motivated by a target population
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The Conventional Causal Interaction Effect

Average Interaction Effect (AIE):

ξAB(a`, bm; a0, b0) = E{Y (a`, bm)− Y (a0, bm)− Y (a`, b0) + Y (a0, b0)}

Equal to linear regression coefficients

Interactive effect interpretation (similar to AMIE):

τAB(a`, bm; a0, b0)︸ ︷︷ ︸
ACE of (a`, bm)

− E{Y (a`, b0)− Y (a0, b0)}︸ ︷︷ ︸
Effect of A = a` when B = b0

− E{Y (a0, bm)− Y (a0, b0)}︸ ︷︷ ︸
Effect of B = bm when A = a0

Conditional effect interpretation:

E{Y (a`, bm)− Y (a0, bm)} − E{Y (a`, b0)− Y (a0, b0)}
= E{Y (a`, bm)− Y (a`, b0)} − E{Y (a0, bm)− Y (a0, b0)}

difference in effect of being male between Asian and White
difference in effect of being Asian between male and female
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Comparison between AMIE and AIE

AIE is NOT invariant to baseline category:
1 cannot compare regression coefficients
2 zero interaction when a baseline category is involved

ξAB(a`, b0; a0, b0) = ξAB(a0, bm; a0, b0) = 0 for all `,m

3 cannot regularize regression coefficients

AMIE and AIE are closely related:
1 Conditional effect as a function of AMIE

E{Yi (a`, b0)− Yi (a0, b0)} = ψA(a`; a0) + πAB(a`, b0; a0, b0)

2 AIE is a linear function of AMIEs

ξAB(a`, bm; a0, b0) = πAB(a`, bm; a0, b0)−πAB(a`, b0; a0, b0)−πAB(a0, bm; a0, b0)

3 AMIE is also a linear function of AIEs
4 No causal interaction  zero AMIEs, zero AIEs
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Higher-order Causal Interaction

J factorial treatments with Lj levels each: T = (T1, . . . ,TJ)

Assumptions:
1 Full factorial design

Y (t) ⊥⊥ T and Pr(T = t) > 0 for all t

2 Independent treatment assignment

Tj ⊥⊥ T−j for all j

Assumption 2 is not necessary for identification but considerably
simplifies estimation

We are interested in the K -way interaction where K ≤ J

We extend all the results for the 2-way interaction to this general case
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Higher-order Average Marginal Interaction Effect

General definition: the difference between ACE and the sum of all
lower-order AMIEs (first-order AMIE = AME)

Example: 3-way AMIE, π1:3(t1, t2, t3; t01, t02, t03), equals

τ1:3(t1, t2, t3; t01, t02, t03)︸ ︷︷ ︸
ACE

−
{
π1:2(t1, t2; t01, t02) + π2:3(t2, t3; t02, t03) + π1:3(t1, t3; t01, t03)

}︸ ︷︷ ︸
sum of all 2-way AMIEs

−
{
ψ(t1; t01) + ψ(t2; t02) + ψ(t3; t03)

}︸ ︷︷ ︸
sum of AMEs

Properties:
1 K -way ACE = the sum of all K -way and lower-order AMIEs
2 Invariance to the baseline condition
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Difficulty of Higher-order AIEs

Generalize the 2-way ATIE by marginalizing the other treatments T1:2

ξ1:2(t1, t2; t01, t02) =

∫
E
{
Y (t1, t2,T

1:2)− Y (t01, t2,T
1:2)

−Y (t1, t02,T
1:2) + Y (t01, t02,T

1:2)
}
dF (T1:2)

In the literature, the 3-way ATIE is defined as

ξ1:3(t1, t2, t3; t01, t02, t03)

= ξ1:2(t1, t2; t01, t02 | T3 = t3)︸ ︷︷ ︸
2-way AIE when T3 = t3

− ξ1:2(t1, t2; t01, t02 | T3 = t03)︸ ︷︷ ︸
2-way AIE when T3 = t03

Higher-order ATIEs are similarly defined sequentially

This representation is based on the conditional effect interpretation

Problem: conditional effect of conditional effects!
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Nonparametric Estimation of AMIE

1 Difference-in-means estimator
estimate ACE and AMEs using the difference-in-means estimators
estimate AMIE as π̂AB = τ̂AB − ψ̂A − ψ̂B

higher-order AMIEs can be estimated sequentially
uses the empirical treatment assignment distribution

2 ANOVA based estimator
saturated ANOVA include all interactions up to the Jth order
weighted zero-sum constraints: for all factors and levels,

LA−1∑
`=0

Pr(Ai = a`)β
A
` = 0,

LA−1∑
`=0

Pr(Ai = a`)β
AB
`m = 0,

LB−1∑
m=0

Pr(Bi = bm)β
B
m = 0,

LB−1∑
m=0

Pr(Bi = bm)β
AB
`m = 0, and so on

AMIEs are differences of coefficients:

E(β̂A
` − β̂A

0 ) = ψA(a`; a0), E(β̂AB
`m − β̂AB

00 ) = πAB(a`, bm; a0, b0)

can use any marginal treatment assignment distribution of choice
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Regularization via GASH-ANOVA

Too many coefficients to be estimated  over fitting, false positives,
difficult interpretation
Need for regularization by collapsing levels and selecting factors
Grouping and Selection using Heredity in ANOVA (Post and Bondell):

J∑
j=1

∑
`,`′

w j
``′ max{φj(`, `′)} ≤ c

where

φj(`, `′) = {|βj` − β
j
`′︸ ︷︷ ︸

AME

|}
⋃ 

⋃
j ′ 6=j

Lj′−1⋃
m=0

|βjj
′

`m − β
jj ′

`′m︸ ︷︷ ︸
AMIE

|


The adaptive weight takes the following form:

w j
``′ =

[
(Lj + 1)

√
Lj max{φ̄j(`, `′)}

]−1

where φ̄j(`, `′) is AMEs and AMIEs estimated without regularization
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Conjoint Analysis of Ethnic Voting in Africa

Ethnic voting and accountability: Carlson (2015, World Politics)

Do voters prefer candidates of same ethnicity regardless of their prior
performance? Do ethnicity and performance interact?

Conjoint analysis in Uganda: 547 voters from 32 villages

Each voter evaluates 3 pairs of hypothetical candidates

5 factors: Coethnicity2, Prior record2, Prior office4,
Platform3, Education8

Prior record = No if Prior office = businessman

 combine these two factors into a single factor with 7 levels

Collapse Education into 2 levels: relevant degrees (MA in
business, law, economics, development) and other degrees
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A Statistical Model of Preference Differentials

ANOVA regression with one-way and two-way effects:

Yi (Ti ) = µ+
J∑

j=1

Lj−1∑
`=0

βj
`1{Tij = `}+

∑
j 6=j′

Lj−1∑
`=0

Lj′−1∑
m=0

βjj′

`m1{Tij = `,Tij′ = m}+ εi

with appropriate weighted zero-sum constraints

In conjoint analysis, we observe the sign of preference differentials
Linear probability model of preference differential:

Pr(Yi (T
∗
i ) > Yi (T

?
i ) | T∗i ,T?

i )

= µ∗ +
J∑

j=1

Lj−1∑
`=0

βj
`(1{T

∗
ij = `} − 1{T ?

ij = `})

+
∑
j 6=j′

Lj−1∑
`=0

Lj′−1∑
m=0

βjj′

`m(1{T
∗
ij = `,T ∗ij′ = m} − 1{T ?

ij = `,T ?
ij′ = m})

where µ∗ = 0.5 if the position of profile does not matter

We apply GASH-ANOVA to this model
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Ranges of Estimated AMEs and AMIEs

Selection
Range prob.

AME
Record 0.122 1.00
Coethnicity 0.053 1.00
Platform 0.023 0.93
Degree 0.000 0.33

AMIE
Coethnicity × Record 0.053 1.00
Record × Platform 0.030 0.92
Platform × Coethnic 0.008 0.64
Coethnicity × Degree 0.000 0.62
Platform × Degree 0.000 0.35
Record × Degree 0.000 0.09

Factor selection probability based on bootstrap
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Close Look at the Estimated AMEs

Selection
Factor AME prob.

Record
Yes/Village
Yes/District
Yes/MP
No/Village
No/District
No/MP

{ No/Businessman

0.122
0.122
0.101
0.047
0.051
0.047
base

〉 0.71
〉 0.77
〉 1.00
〉 0.74
〉 0.74
〉 1.00

Platform{
Jobs
Clinic

{ Education

−0.023
−0.023

base

〉 0.56
〉 0.94

Coethnicity 0.054 1.00
Degree 0.000 0.33

Egami and Imai (Princeton) Causal Interaction Cornell (Oct. 18, 2017) 18 / 22



Effect of Regularization on AMIEs

Yes/Village Yes/District Yes/MP No/Village No/District No/MP No/Business

−0.04 0.00 0.04

Yes/Village Yes/District Yes/MP No/Village No/District No/MP No/Business

Record

−0.05 0.00 0.05

Without Regularization

Yes/Village Yes/District Yes/MP No/Village No/District No/MP No/Business

−0.02 0.00 0.02

Yes/Village Yes/District Yes/MP No/Village No/District No/MP No/Business

Record

−0.015 0.000 0.015

With Regularization

C
oe

th
ni

ci
ty

P
la

tfo
rm
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Decomposition and Conditional Effects

Decomposition of ACE (Coethnicity × Record interaction):

τ(Coethnic, No/Business; Non-coethnic, No/MP)︸ ︷︷ ︸
−2.4

= ψ(Coethnic; Non-coethnic)︸ ︷︷ ︸
5.4

+ψ(No/Business; No/MP)︸ ︷︷ ︸
−4.7

+π(Coethnic, No/Business; Non-coethnic, No/MP)︸ ︷︷ ︸
−3.1

Conditional effects (Platform × Record interaction):

AMIE: π(Education, No/MP}; {Job, No/MP}) = −2.3
Conditional effect of Education relative to Job for No/MP is
approximately zero
AME: ψ(Education; Job) = 2.3
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Concluding Remarks

Interaction effects play an essential role in causal heterogeneity
1 moderation
2 causal interaction

Randomized experiments with a factorial design
1 useful for testing multiple treatments and their interactions
2 social science applications: audit studies, conjoint analysis
3 challenge: estimation and interpretation in high dimension

Average Marginal Interaction Effect (AMIE)
1 invariant to baseline condition
2 straightforward interpretation even for high order interaction
3 enables effect decomposition
4 enables regularization through ANOVA

Designing factorial experiments (work in progress)
1 select factors and levels via our method to reduce dimension
2 use unregularized ANOVA for the main study
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