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Motivation

Central role of propensity score in causal inference
Adjusting for observed confounding in observational studies
Matching and inverse-probability weighting methods

Extensions of propensity score to general treatment regimes
Weighting (e.g., Imbens, 2000; Robins et al., 2000)
Subclassification (e.g., Imai & van Dyk, 2004)
Regression (e.g., Hirano & Imbens, 2004)

But, propensity score is mostly applied to binary treatment
All existing methods assume correctly estimated propensity score
No reliable methods to estimate generalized propensity score
Harder to check balance across a non-binary treatment
Many researchers dichotomize the treatment
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Contributions of the Paper

Results are often sensitive to misspecification of propensity score

Solution: Estimate the generalized propensity score such that
covariates are balanced

Generalize the covariate balancing propensity score (CBPS; Imai
& Ratkovic, 2014, JRSSB)

1 Multi-valued treatment (3 and 4 categories)
2 Continuous treatment

Useful especially because checking covariate balance is harder
for non-binary treatment

Facilitates the use of generalized propensity score methods
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Propensity Score for a Binary Treatment

Notation:
Ti ∈ {0,1}: binary treatment
Xi : pre-treatment covariates

Dual characteristics of propensity score:
1 Predicts treatment assignment:

π(Xi ) = Pr(Ti = 1 | Xi )

2 Balances covariates (Rosenbaum and Rubin, 1983):

Ti ⊥⊥ Xi | π(Xi )

Use of propensity score
Strong ignorability: Yi (t)⊥⊥Ti | Xi and 0 < Pr(Ti = 1 | Xi ) < 1
Propensity score matching: Yi (t)⊥⊥Ti | π(Xi )
Propensity score (inverse probability) weighting
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Propensity Score Tautology

Propensity score is unknown and must be estimated
Dimension reduction is purely theoretical: must model Ti given Xi
Diagnostics: covariate balance checking

In theory: ellipsoidal covariate distributions
=⇒ equal percent bias reduction
In practice: skewed covariates and adhoc specification searches

Propensity score methods are sensitive to model misspecification

Propensity score tautology (Ho et al. 2007 Political Analysis):

it works when it works, and when it does not work, it does
not work (and when it does not work, keep working at it).
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Kang and Schafer (2007, Statistical Science)

Simulation study: the deteriorating performance of propensity
score weighting methods when the model is misspecified

4 covariates X ∗i : all are i.i.d. standard normal
Outcome model: linear model
Propensity score model: logistic model with linear predictors
Misspecification induced by measurement error:

Xi1 = exp(X ∗i1/2)
Xi2 = X ∗i2/(1 + exp(X ∗1i ) + 10)
Xi3 = (X ∗i1X ∗i3/25 + 0.6)3

Xi4 = (X ∗i1 + X ∗i4 + 20)2
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Weighting Estimators Evaluated

1 Horvitz-Thompson (HT):

1
n

n∑
i=1

{
TiYi

π̂(Xi)
− (1− Ti)Yi

1− π̂(Xi)

}
2 Inverse-probability weighting with normalized weights (IPW):

HT with normalized weights (Hirano, Imbens, and Ridder)

3 Weighted least squares regression (WLS): linear regression with
HT weights

4 Doubly-robust least squares regression (DR): consistently
estimates the ATE if either the outcome or propensity score model
is correct (Robins, Rotnitzky, and Zhao)
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Weighting Estimators Do Fine If the Model is Correct
Bias RMSE

Sample size Estimator GLM True GLM True
(1) Both models correct

n = 200

HT 0.33 1.19 12.61 23.93
IPW −0.13 −0.13 3.98 5.03

WLS −0.04 −0.04 2.58 2.58
DR −0.04 −0.04 2.58 2.58

n = 1000

HT 0.01 −0.18 4.92 10.47
IPW 0.01 −0.05 1.75 2.22

WLS 0.01 0.01 1.14 1.14
DR 0.01 0.01 1.14 1.14

(2) Propensity score model correct

n = 200

HT −0.05 −0.14 14.39 24.28
IPW −0.13 −0.18 4.08 4.97

WLS 0.04 0.04 2.51 2.51
DR 0.04 0.04 2.51 2.51

n = 1000

HT −0.02 0.29 4.85 10.62
IPW 0.02 −0.03 1.75 2.27

WLS 0.04 0.04 1.14 1.14
DR 0.04 0.04 1.14 1.14
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Weighting Estimators are Sensitive to Misspecification
Bias RMSE

Sample size Estimator GLM True GLM True
(3) Outcome model correct

n = 200

HT 24.25 −0.18 194.58 23.24
IPW 1.70 −0.26 9.75 4.93

WLS −2.29 0.41 4.03 3.31
DR −0.08 −0.10 2.67 2.58

n = 1000

HT 41.14 −0.23 238.14 10.42
IPW 4.93 −0.02 11.44 2.21

WLS −2.94 0.20 3.29 1.47
DR 0.02 0.01 1.89 1.13

(4) Both models incorrect

n = 200

HT 30.32 −0.38 266.30 23.86
IPW 1.93 −0.09 10.50 5.08

WLS −2.13 0.55 3.87 3.29
DR −7.46 0.37 50.30 3.74

n = 1000

HT 101.47 0.01 2371.18 10.53
IPW 5.16 0.02 12.71 2.25

WLS −2.95 0.37 3.30 1.47
DR −48.66 0.08 1370.91 1.81
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Covariate Balancing Propensity Score (CBPS)

Idea: Estimate propensity score such that covariates are balanced
Goal: Robust estimation of parametric propensity score model

Covariate balancing conditions:

E
{

TiXi

πβ(Xi)
− (1− Ti)Xi

1− πβ(Xi)

}
= 0

Over-identification via score conditions:

E

{
Tiπ
′
β(Xi)

πβ(Xi)
−

(1− Ti)π
′
β(Xi)

1− πβ(Xi)

}
= 0

Can be interpreted as another covariate balancing condition

Combine them with the Generalized Method of Moments or
Empirical Likelihood
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CBPS Makes Weighting Methods Work Better
Bias RMSE

Estimator GLM CBPS1 CBPS2 True GLM CBPS1 CBPS2 True
(3) Outcome model correct

n = 200

HT 24.25 1.09 −5.42 −0.18 194.58 5.04 10.71 23.24
IPW 1.70 −1.37 −2.84 −0.26 9.75 3.42 4.74 4.93
WLS −2.29 −2.37 −2.19 0.41 4.03 4.06 3.96 3.31
DR −0.08 −0.10 −0.10 −0.10 2.67 2.58 2.58 2.58

n = 1000

HT 41.14 −2.02 2.08 −0.23 238.14 2.97 6.65 10.42
IPW 4.93 −1.39 −0.82 −0.02 11.44 2.01 2.26 2.21
WLS −2.94 −2.99 −2.95 0.20 3.29 3.37 3.33 1.47
DR 0.02 0.01 0.01 0.01 1.89 1.13 1.13 1.13

(4) Both models incorrect

n = 200

HT 30.32 1.27 −5.31 −0.38 266.30 5.20 10.62 23.86
IPW 1.93 −1.26 −2.77 −0.09 10.50 3.37 4.67 5.08
WLS −2.13 −2.20 −2.04 0.55 3.87 3.91 3.81 3.29
DR −7.46 −2.59 −2.13 0.37 50.30 4.27 3.99 3.74

n = 1000

HT 101.47 −2.05 1.90 0.01 2371.18 3.02 6.75 10.53
IPW 5.16 −1.44 −0.92 0.02 12.71 2.06 2.39 2.25
WLS −2.95 −3.01 −2.98 0.19 3.30 3.40 3.36 1.47
DR −48.66 −3.59 −3.79 0.08 1370.91 4.02 4.25 1.81
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The Setup for a General Treatment Regime

Ti ∈ T : non-binary treatment
Xi : pre-treatment covariates
Yi(t): potential outcomes
Strong ignorability:

Ti ⊥⊥ Yi(t) | Xi and p(Ti = t | Xi) > 0 for all t ∈ T

p(Ti | Xi): generalized propensity score

T̃i : dichotomized treatment
T̃i = 1 if Ti ∈ T1
T̃i = 0 if Ti ∈ T0
T0
⋂
T1 = ∅ and T0

⋃
T1 = T

What is the problem of dichotomizing a non-binary treatment?
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The Problems of Dichotomization

Under strong ignorability,

E(Yi | T̃i = 1,Xi)− E(Yi | T̃i = 0,Xi)

=

∫
T1

E(Yi(t) | Xi)p(Ti = t | T̃i = 1,Xi)dt

−
∫
T0

E(Yi(t) | Xi)p(Ti = t | T̃i = 0,Xi)dt

Aggregation via p(Ti | T̃i ,Xi)
1 some substantive insights get lost
2 external validity issue

Checking covariate balance: T̃i⊥⊥Xi does not imply Ti⊥⊥Xi
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Two Motivating Examples

1 Effect of education on political participation
Education is assumed to play a key role in political participation
Ti : 3 education levels (graduated from college, attended college but
not graduated, no college)
Original analysis dichotomization (some college vs. no college)
Propensity score matching
Critics employ different matching methods

2 Effect of advertisements on campaign contributions
Do TV advertisements increase campaign contributions?
Ti : Number of advertisements aired in each zip code
ranges from 0 to 22,379 advertisements
Original analysis dichotomization (over 1000 vs. less than 1000)
Propensity score matching followed by linear regression with an
original treatment variable
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Balancing Covariates for a Dichotomized Treatment

0.0 0.2 0.4 0.6 0.8 1.0

Kam and Palmer

Absolute Difference in Standardized Means

Original
Propensity Score Matching

Genetic Matching

Graduated vs.
 Some College

Graduated vs.
 No College

Some vs.
 No College
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May Not Balance Covariates for the Original Treatment

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Urban and Niebler

Absolute Pearson Correlations

Fixed
 Effects

Main
 Variables

Original

Propensity Score Matching
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Propensity Score for a Multi-valued Treatment

Consider a multi-valued treatment: T = {0,1, . . . , J − 1}
Standard approach: MLE with multinomial logistic regression

πj (Xi ) = Pr(Ti = j | Xi ) =
exp

(
X>i βj

)
1 + exp

(∑J
j′=1 X>i βj′

)
where β0 = 0 and

∑J−1
j=0 π

j(Xi) = 1

Covariate balancing conditions with inverse-probability weighting:

E

(
1{Ti = 0}Xi

π0
β(Xi )

)
= E

(
1{Ti = 1}Xi

π1
β(Xi )

)
= · · · = E

(
1{Ti = J − 1}Xi

πJ−1
β (Xi )

)

which equals E(Xi)

Idea: estimate πj(Xi) to optimize the balancing conditions
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CBPS for a Multi-valued Treatment

Consider a 3 treatment value case as in our motivating example
Sample balance conditions with orthogonalized contrasts:

ḡβ(T ,X ) =
1
N

N∑
i=1

21{Ti=0}
π0
β(Xi )

− 1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

Xi

Generalized method of moments (GMM) estimation:

β̂CBPS = argmin
β

ḡβ(T ,X ) Σβ(T ,X )−1 ḡβ(T ,X )

where Σβ(T ,X ) is the covariance of sample moments
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Score Conditions as Covariate Balancing Conditions

Balancing the first derivative across treatment values:

1
N

N∑
i=1

sβ(Ti ,Xi )

=
1
N

N∑
i=1


(

1{Ti=1}
π1
β(Xi )

− 1{Ti=0}
π0
β(Xi )

)
∂
∂β1

π1
β(Xi ) +

(
1{Ti=2}
π2
β(Xi )

− 1{Ti=0}
π0
β(Xi )

)
∂
∂β1

π2
β(Xi )(

1{Ti=1}
π1
β(Xi )

− 1{Ti=0}
π0
β(Xi )

)
∂
∂β2

π1
β(Xi ) +

(
1{Ti=2}
π2
β(Xi )

− 1{Ti=0}
π0
β(Xi )

)
∂
∂β2

π2
β(Xi )


=

1
N

N∑
i=1

(
1{Ti = 1} − π1

β(Xi )

1{Ti = 2} − π2
β(Xi )

)
Xi

Can be added to CBPS as over-identifying restrictions
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Extension to More Treatment Values

The same idea extends to a treatment with more values
For example, consider a four-category treatment
Sample moment conditions based on orthogonalized contrasts:

ḡβ(Ti ,Xi) =
1
N

N∑
i=1


1{Ti=0}
π0
β(Xi )

+ 1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

− 1{Ti=3}
π3
β(Xi )

1{Ti=0}
π0
β(Xi )

− 1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

+ 1{Ti=3}
π3
β(Xi )

−1{Ti=0}
π0
β(Xi )

+ 1{Ti=1}
π1
β(Xi )

− 1{Ti=2}
π2
β(Xi )

+ 1{Ti=3}
π3
β(Xi )

Xi

A similar orthogonalization strategy can be applied to the
longitudinal setting with marginal structural models (Imai &
Ratkovic, JASA, in-press)
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Propensity Score for a Continuous Treatment

The stabilized weights:
f (Ti)

f (Ti | Xi)

Covariate balancing condition:

E
(

f (T ∗i )

f (T ∗i | X ∗i )
T ∗i X ∗i

)
=

∫ {∫
f (T ∗i )

f (T ∗i | X ∗i )
T ∗i dF (T ∗i | X ∗i )

}
X ∗i dF (X ∗i )

= E(T ∗i )E(X ∗i ) = 0.

where T ∗i and X ∗i are centered versions of Ti and Xi

Again, estimate the generalized propensity score such that
covariate balance is optimized
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CBPS for a Continuous Treatment

Standard approach (e.g., Robins et al. 2000):

T ∗i | X ∗i
indep.∼ N (X>i β, σ

2)

T ∗i
i.i.d.∼ N (0, σ2)

where further transformation of Ti can make these distributional
assumptions more credible

Sample covariate balancing conditions:

ḡθ(T ,X ) =

(
s̄θ(T ,X )
w̄θ(T ,X )

)
=

1
N

N∑
i=1


1
σ2 (T ∗i − X ∗i

>β)X ∗i
− 1

2σ2

{
1− 1

σ2 (T ∗i − X ∗i
>β)2

}
exp

[
1

2σ2

{
−2X ∗i

>β + (X ∗i
>β)2

}]
T ∗i X ∗i


GMM estimation: covariance matrix can be analytically calculated
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Back to the Education Example: CBPS vs. ML

CBPS achieves better covariate balance
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CBPS Avoids Extremely Large Weights
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CBPS Balances Well for a Dichotomized Treatment
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Empirical Results: Graduation Matters, Efficiency Gain
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Onto the Advertisement Example
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Empirical Finding: Some Effect of Advertisement
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Concluding Remarks

Numerous advances in generalizing propensity score methods to
non-binary treatments
Yet, many applied researchers don’t use these methods and
dichotomize non-binary treatments

We offer a simple method to improve the estimation of propensity
score for general treatment regimes
Open-source R package: CBPS: Covariate Balancing Propensity
Score available at CRAN

Ongoing extensions:
1 nonparametric estimation via empirical likelihood
2 generalizing instrumental variables estimates
3 spatial treatments
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