Statistical Analysis of Randomized Experiments with Nonignorable Missing Binary Outcomes

Kosuke Imai

Department of Politics
Princeton University
January 12, 2007

Overview

- Use of randomized experiments for causal inference.
- Missing outcomes threaten the validity of causal inference.
- A growing literature on the topic:
- Method of bounds (e.g., Horowitz and Manksi, 2000).
- Semiparametric methods (e.g., Scharfstein et al. 1999).
- Ignorability (e.g., Yau and Little, 2001).
- Latent ignorability (e.g., Frangakis and Rubin, 1999).
- Nonignorable missing outcomes:
- Political science: self-reported voting behavior.
- Economics: self-reported income.
- Medicine: self-reported health status.
- The research project:
- Alternative identification and estimation strategies.
- With and without noncompliance.
- New sensitivity analyses.
- Applications in political science, psychology, and public health.

A Motivating Example: German Election Experiment

- Internet randomized experiment during the 2005 election.
- Treatment group: asked if they intend to vote, whether in person or by mail, and the main obstacle they face.
- Control group: asked if they intend to vote, but not how.
- Outcome: self-reported turnout.
- Psychological theory on intentions (e.g., Gollwitzer, 1999):
- Goal intentions: "I am going to vote!"
- Implementation intentions: "Since I will be busy on the election day, I am going to vote by mail!"
- Theoretical and empirical evidence: implementation intentions can more effectively increase the probability of achieving one's goal by automating goal implementation through anticipatory decisions (e.g., drug intake, breast self-examination, regular exercises).

Data and Nonresponse Problem

- Data:

| | | fraction | birth year | fraction of |
| :--- | :---: | :---: | :---: | :---: | :---: |
| of female | (mean) | nonresponse | | |
| vote intenders | rate | | | |

- Different nonresponse rates (statistically significant at 10% level using χ^{2} test).
- Possibility of nonignorable nonresponse: the act of voting itself may increase their interest in politics and hence the probability of their participation in the post-election survey.

Framework for Standard Randomized Experiments

- Causal inference via potential outcomes (e.g., Holland 1986).
- Experimental unit: $i=1,2, \ldots, n$.
- Binary treatments: $T_{i} \in\{0,1\}$.
- Potential outcomes: $Y_{i}\left(T_{i}\right)$.
- Observed outcome: $Y_{i}=T_{i} Y_{i}(1)+\left(1-T_{i}\right) Y_{i}(0)$.
- Potential response indicators: $R_{i}\left(T_{i}\right)$.
- Observed response indicator: $R_{i}=T_{i} R_{i}(1)+\left(1-T_{i}\right) R_{i}(0)$.
- Pre-treatment covariates: X_{i}.
- No interference among units (Cox 1958; Rubin 1990).
- Randomized treatment: $\left(Y_{i}(1), Y_{i}(0), R_{i}(1), R_{i}(0)\right) \Perp T_{i}$ for all i.
- Estimands:
- Average Treatment Effect (ATE):
$\tau_{\text {ATE }} \equiv E\left[Y_{i}(1)-Y_{i}(0)\right]=E\left[Y_{i} \mid T_{i}=1\right]-E\left[Y_{i} \mid T_{i}=0\right]$.
- Conditional Average Treatment Effect (CATE):
$\tau_{C A T E} \equiv \frac{1}{n} \sum_{i=1}^{n} E\left[Y_{i}(1)-Y_{i}(0) \mid X_{i}\right]$.

Standard Randomized Experiments Identification and Estimation Strategies

Identification Problem in the Binary Case

- Assume $Y_{i}(0), Y_{i}(1) \in\{0,1\}$.
- Define,

$$
\begin{aligned}
p_{j k} & \equiv \operatorname{Pr}\left(Y_{i}=1 \mid T_{i}=j, R_{i}=k\right) \\
\pi_{j k} & \equiv \operatorname{Pr}\left(T_{i}=j, R_{i}=k\right)
\end{aligned}
$$

- Then, the ATE can be written as,

$$
\tau_{\text {ATE }}=\frac{p_{10} \pi_{10}+p_{11} \pi_{11}}{\pi_{10}+\pi_{11}}-\frac{p_{00} \pi_{00}+p_{01} \pi_{01}}{\pi_{00}+\pi_{01}}
$$

where p_{00} and p_{10} are not identifiable from the data.

- Since $p_{j 0} \in[0,1]$, the sharp bounds (Horowitz \& Manski, 2000) are given by,

$$
\tau_{\text {ATE }} \in\left[\frac{p_{11} \pi_{11}\left(\pi_{00}+\pi_{01}\right)-\left(\pi_{00}+p_{01} \pi_{01}\right)\left(\pi_{10}+\pi_{11}\right)}{\left(\pi_{10}+\pi_{11}\right)\left(\pi_{00}+\pi_{01}\right)}, \quad \begin{array}{c}
\left.\frac{\left(\pi_{10}+p_{11} \pi_{11}\right)\left(\pi_{00}+\pi_{01}\right)-p_{01} \pi_{01}\left(\pi_{10}+\pi_{11}\right)}{\left(\pi_{10}+\pi_{11}\right)\left(\pi_{00}+\pi_{01}\right)}\right]
\end{array}\right.
$$

Identification Strategies

- Ignorability Assumption (Little \& Rubin, 1987): the outcome variable is missing at random (MAR) given the treatment status and observed covariates. For $j \in\{0,1\}$ and $x \in \mathcal{X}$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=j, Y_{i}(j)=1, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=j, Y_{i}(j)=0, X_{i}=x\right)
\end{aligned}
$$

- The proposed assumption: missing-data mechanism directly depends on the realized value of the outcome variable itself, but is conditionally independent of the treatment status.
- Reasonable if the treatment does not directly cause nonresponse.
- Nonignorability (NI) Assumption: For $k \in\{0,1\}$ and $x \in \mathcal{X}$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=0, Y_{i}(0)=k, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=1, Y_{i}(1)=k, X_{i}=x\right)
\end{aligned}
$$

- Identification of the ATE is established via Bayes rule (PROPOSITION 1).

Standard Randomized Experiments Identification and Estimation Strategies

Inference under the Nonignorability Assumption

(1) Without observed covariates (given a particular value of a covariate), the ML estimator of the ATE is available in a closed form (PROPOSITION 2).
(2) A parametric approach with the covariates (estimation of CACE):

- Specify the following parametric models (e.g., logistic regression),

$$
\begin{aligned}
q_{j}(x) & =\operatorname{Pr}\left(Y_{i}=1 \mid T_{i}=j, X_{i}=x\right) \\
r_{j k}(x) & =\operatorname{Pr}\left(R_{i}=1 \mid T_{i}=j, Y_{i}=k, X_{i}=x\right)
\end{aligned}
$$

- Complete-data likelihood function:

$$
\begin{aligned}
& \prod_{i=1}^{n}\left[r_{.1}\left(X_{i}\right)^{R_{i}}\left\{1-r_{.1}\left(X_{i}\right)\right\}^{1-R_{i}}\right]^{Y_{i}}\left[r_{.0}\left(X_{i}\right)^{R_{i}}\left\{1-r_{.0}\left(X_{i}\right)\right\}^{1-R_{i}}\right]^{1-Y_{i}} \\
& \times\left[q_{1}\left(X_{i}\right)^{Y_{i}}\left\{1-q_{1}\left(X_{i}\right)\right\}^{\left.1-Y_{i}\right]_{i}}\left[q_{0}\left(X_{i}\right)^{Y_{i}}\left\{1-q_{0}\left(X_{i}\right)\right\}^{1-Y_{i}}\right]^{1-T_{i}}\right.
\end{aligned}
$$

where $r_{\cdot k}(x)=r_{1 k}(x)=r_{0 k}(x)$ for $x \in \mathcal{X}$ under the NI assumption.

- Computation: EM algorithm, Gibbs sampler with prior distributions.

Multi-valued Outcome and Treatment Variables

- Setup:
- J-valued treatment variable: $T_{i} \in \mathcal{T} \equiv\{0,1, \ldots, J-1\}$.
- K-valued outcome variable: $Y\left(T_{i}\right) \in \mathcal{Y} \equiv\{0,1, \ldots, K-1\}$.
- Average Treatment Effects: $\tau_{A T E}^{(j)} \equiv E\left[Y_{i}(j)-Y_{i}(j-1)\right]$.
- The NI assumption:

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(j)=1 \mid T_{i}=j, Y_{i}(j)=k, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}\left(j^{\prime}\right)=1 \mid T_{i}=j^{\prime}, Y_{i}\left(j^{\prime}\right)=k, X_{i}=x\right)
\end{aligned}
$$

- Identification: there are $J(K-1)$ unknown probabilities while the assumption implies $J(J-1) K / 2$ constraints. Thus, the identification is possible so long as $J \geq 3-2 / K$.
- A general parametric approach: For example, we may assume,

$$
\operatorname{Pr}\left(R_{i}=1 \mid T_{i}=j, Y_{i}=y, X_{i}=x\right)=\frac{\exp (\alpha+\beta y+\gamma x)}{1+\exp (\alpha+\beta y+\gamma x)}
$$

for every $j \in \mathcal{T}, x \in \mathcal{X}$, and $y \in \mathcal{Y}$.

Standard Randomized Experiments Sensitivity Analysis

Sensitivity Analysis with No Covariate

- Motivation: since neither MAR nor NI assumptions are directly verifiable from the data, it is of interest to examine the sensitivity of one's conclusion to the key identifying assumption.
- Sensitivity analysis based on the following parameter,

$$
\theta_{k}^{N I} \equiv \frac{\operatorname{Pr}\left(R_{i}(1)=1 \mid T_{i}=1, Y_{i}(1)=k\right)}{\operatorname{Pr}\left(R_{i}(0)=1 \mid T_{i}=0, Y_{i}(0)=k\right)}
$$

for $k=0,1$ where the range of the parameter is given by,

$$
\begin{aligned}
\frac{\left(1-p_{11}\right) \pi_{11}}{\left(1-p_{11}\right) \pi_{11}+\pi_{10}} & \leq \theta_{0}^{N /} \leq \frac{\left(1-p_{01}\right) \pi_{01}+\pi_{00}}{\left(1-p_{01}\right) \pi_{01}} \\
\frac{p_{11} \pi_{11}}{p_{11} \pi_{11}+\pi_{10}} & \leq \theta_{1}^{N /} \leq \frac{p_{01} \pi_{01}+\pi_{00}}{p_{01} \pi_{01}}
\end{aligned}
$$

- $\tau_{\text {ATE }}$ is now a function of $\theta_{k}^{N /}$ and identifiable parameters.
- See how $\tau_{\text {ATE }}$ varies along with the value of θ_{k}.

Sensitivity Analysis with Observed Covariates

- Consider the following logistic regression:

$$
\operatorname{Pr}\left(R_{i}=1 \mid T_{i}=j, Y_{i}=k, X_{i}=x\right)=\frac{\exp \left(\alpha_{j k}+\beta x\right)}{1+\exp \left(\alpha_{j k}+\beta x\right)}
$$

- The sensitivity analysis can be based on the odds ratio for the conditional probabilities of missingness,

$$
\Gamma_{k}^{N /}=\frac{r_{1 k}\left(x ; \eta_{1 k}\right) /\left[1-r_{1 k}\left(x ; \eta_{1 k}\right)\right]}{r_{0 k}\left(x ; \eta_{0 k}\right) /\left[1-r_{0 k}\left(x ; \eta_{0 k}\right)\right]}=\exp \left(\alpha_{1 k}-\alpha_{0 k}\right)
$$

where $\Gamma_{k}^{N /} \geq 0$ for $k \in\{0,1\}$.

- Computation: EM algorithm with the following constraint $\alpha_{1 k}=\log \Gamma_{k}^{N I}+\alpha_{0 k}$, or Bayesian analysis incorporating this constraint.

Analysis of the German Election Experiment

- Model:
(1) Turnout model: $q_{j}\left(X_{i}\right)=\operatorname{Pr}\left(Y_{i}=1 \mid T_{i}=j, X_{i}=x\right)=$ $\exp \left(\alpha_{j}+x^{\top} \beta\right) /\left[1+\exp \left(\alpha_{j}+x^{\top} \beta\right)\right]$.
(2) Response model: $r_{\cdot k}\left(X_{i}\right)=\operatorname{Pr}\left(R_{i}=1 \mid Y_{i}=k, X_{i}=x\right)=$ $\exp \left(\gamma_{k}+x^{\top} \delta\right) /\left[1+\exp \left(\gamma_{k}+x^{\top} \delta\right)\right]$.
- ML estimates (using EM algorithm) with bootstrap standard errors.
- Results:

	point	standard	$95 \% \mathrm{Cl}$	
	estimate	error	lower	upper
Missing at Random (MAR)				
\quad No covariate	0.021	0.026	-0.030	0.073
\quad With covariates	0.014	0.025	-0.035	0.063
Nonignorable (NI)				
\quad No covariate	0.035	0.051	-0.049	0.119
With covariates	0.046	0.036	-0.011	0.129

Sensitivity Analysis without Covariates

Sensitivity Analysis with Covariates

- Results under the NI assumption:

	$\Gamma_{1}^{N I}=\frac{1}{3}$	$\Gamma_{1}^{N /}=1$	$\Gamma_{1}^{N /}=3$
$\Gamma_{0}^{N /}=\frac{1}{3}$	0.046	0.003	-0.075
	$[0.027)$	(0.020)	(0.027)
	$[-0.006,0.100]$	$[-0.032,0.046]$	$[-0.128,-0.024]$
$=1$	0.045	0.046	0.004
	(0.029)	(0.036)	(0.039)
	$[-0.015,0.097]$	$[-0.011,0.129]$	$[-0.073,0.080]$
$\Gamma_{0}^{N /}=3$	0.134	0.047	0.046
	(0.029)	(0.033)	(0.028)
	$[0.080,0.192]$	$[-0.020,0.111]$	$[-0.009,0.101]$

- The ML estimates appear to be somewhat sensitive, but the scenarios corresponding to $\left(\Gamma_{0}^{N /}, \Gamma_{1}^{N /}\right)=(3,1 / 3),(1 / 3,3)$ may be highly unlikely.

Randomized Experiments with Noncompliance

- Randomized "encouragement" design:
- Binary encouragement: $Z_{i} \in\{0,1\}$.
- Potential binary treatments: $T_{i}\left(Z_{i}\right) \in\{0,1\}$.
- Observed treatment: $T_{i}=Z_{i} T_{i}(1)+\left(1-Z_{i}\right) T_{i}(0)$.
- Potential outcomes: $Y_{i}\left(Z_{i}\right)$.
- Observed outcome: $Y_{i}=Z_{i} Y_{i}(1)+\left(1-Z_{i}\right) Y_{i}(0)$.
- Potential response indicators: $R_{i}\left(Z_{i}\right)$.
- Observed response indicator: $R_{i}=Z_{i} R_{i}(1)+\left(1-Z_{i}\right) R_{i}(0)$.
- Randomization of encouragement:

$$
\left(Y_{i}(1), Y_{i}(0), T_{i}(1), T_{i}(0), R_{i}(1), R_{i}(0)\right) \quad \Perp \quad Z_{i},
$$

- Intention-To-Treat (ITT) effect: $\tau_{I T T} \equiv E\left[Y_{i}\left(T_{i}(1), 1\right)-Y_{i}\left(T_{i}(0), 0\right)\right]$.

Instrumental Variables (Angrist, Imbens \& Rubin, 1996)

- Noncompliance
- Complier: $T_{i}(1)=1$ and $T_{i}(0)=0$.
- Noncomplier:
(1) Always-taker $\left(C_{i}=c\right): T_{i}(1)=T_{i}(0)=1$.
(2) Never-taker $\left(C_{i}=n\right): T_{i}(1)=T_{i}(0)=0$.
(3) Defier $\left(C_{i}=d\right): T_{i}(1)=0$ and $T_{i}(0)=1$.
- Assumptions:
(1) Monotonicity (no defier): $T_{i}(1) \geq T_{i}(0)$.
(2) Exclusion restriction for noncompliers: $Y_{i}(1)=Y_{i}(0)$ for $C_{i}=a, n$ (i.e., zero ITT effect for always-takers and never-takers).
- Complier Average Causal Effect (IV estimand):

$$
\tau_{C A C E} \equiv E\left[Y_{i}(1)-Y_{i}(0) \mid C_{i}=c\right]=\frac{E\left[Y_{i}(1)-Y_{i}(0)\right]}{E\left[T_{i}(1)-T_{i}(0)\right]}
$$

Identification Strategies

- Ignorability (Yau \& Little, 2001): For $j=0,1$ and $I=0,1$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(I)=1 \mid Y_{i}(I)=1, T_{i}(I)=j, Z_{i}=I, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(I)=1 \mid Y_{i}(I)=0, T_{i}(I)=j, Z_{i}=I, X_{i}=x\right)
\end{aligned}
$$

- Latent Ignorability (Frangakis \& Rubin, 1999):
(1) Latent ignorability: For $I=0,1$ and $t \in\{c, n, a\}$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(I)=1 \mid Y_{i}(I)=1, Z_{i}=I, C_{i}=t, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(I)=1 \mid Y_{i}(I)=0, Z_{i}=I, C_{i}=t, X_{i}=x\right) .
\end{aligned}
$$

(2) Compound exclusion restriction for noncompliers:

$$
Y_{i}(0)=Y_{i}(1), \text { and } R_{i}(1)=R_{i}(0), \text { for } C_{i}=n, a .
$$

- Nonignorability: For $j=0,1$, and $k=0,1$,

$$
\begin{aligned}
& \operatorname{Pr}\left(R_{i}(1)=1 \mid T_{i}(1)=j, Y_{i}(1)=k, Z_{i}=1, X_{i}=x\right) \\
= & \operatorname{Pr}\left(R_{i}(0)=1 \mid T_{i}(0)=j, Y_{i}(0)=k, Z_{i}=0, X_{i}=x\right)
\end{aligned}
$$

Theoretical Results in the Binary Case

- Apply the same analytical strategy as before.
- Define,

$$
\begin{aligned}
p_{j k l} & \equiv \operatorname{Pr}\left(Y_{i}=1 \mid T_{i}=j, R_{i}=k, Z_{i}=l\right) \\
\pi_{j k l} & \equiv \operatorname{Pr}\left(T_{i}=j, R_{i}=k, Z_{i}=l\right)
\end{aligned}
$$

- Rewrite the ITT effect as,

$$
\tau_{I T T}=\frac{\sum_{j=0}^{1} \sum_{k=0}^{1} p_{j k 1} \pi_{j k 1}}{\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{j k 1}}-\frac{\sum_{j=0}^{1} \sum_{k=0}^{1} p_{j k 0} \pi_{j k 0}}{\sum_{j=0}^{1} \sum_{k=0}^{1} \pi_{j k 0}}
$$

where $\pi_{j k l}$ and $p_{j 1 /}$ are identifiable, but $p_{j 0 /}$ is not.

- Thus, the identification of $\tau_{I T T}$ requires four constraints (Proposition 3).

Concluding Remarks

- Missing outcomes in randomized experiments are frequently encountered in practice.
- Possibility of nonignorable missing-data mechanism.
- Identification and estimation strategies are proposed for:
- standard randomized experiments.
- randomized experiments with noncompliance.
- The proposed sensitivity analyses are useful to examine the robustness of one's conclusion.
- The method of bounds gives the identification region without any assumption.
- The assumptions such as MAR and NI are not directly identifiable from the observed data, but point-identify the quantity of interest.
- Sensitivity analysis complements these two approaches.

