Statistical Analysis of Causal Mechanisms

Kosuke Imai

Princeton University

April 13, 2009

Kosuke Imai (Princeton)

Causal Mechanisms

April 13, 2009 1 / 26

Papers and Software

- Collaborators: Luke Keele, Dustin Tingley, and Teppei Yamamoto
- "Identification, Inference, and Sensitivity Analysis for Causal Mediation Effects." available at http://imai.princeton.edu/research/mediation.html
- "A General Approach to Causal Mediation Analysis"
- "Causal Mediation Analysis in R"
- R package mediation

Statistics and Causal Mechanisms

- Causal inference is a central goal of social science and public policy research
- Randomized experiments are seen as gold standard
- Design and analyze observational studies to *replicate* experiments
- But, experiments are a black box
- Can only tell whether the treatment causally affects the outcome
- Not how and why the treatment affects the outcome
- Qualitative research uses process tracing
- How can quantitative research be used to identify causal mechanisms?

Overview of the Talk

- **Goal:** Convince you that statistics *can* play a role in identifying causal mechanisms
- Method: Causal Mediation Analysis

- Direct and indirect effects; intermediate and intervening variables
- Path analysis, structural equation modeling

Causal Mediation Analysis in American Politics

- The political psychology literature on media framing
- Nelson et al. (APSR, 1998)

Causal Mediation Analysis in Comparative Politics

- Authoritarian government civil war Natural resources Slow growth
- Causes of civil war: Fearon and Laitin (APSR, 2003)

Resource curse thesis

Causal Mediation Analysis in International Relations

- The literature on international regimes and institutions
- Krasner (International Organization, 1982)

• Power and interests are mediated by regimes

Kosuke Imai (Princeton)	Causal Mechanisms	April 13, 2009	7 / 26

Current Practice in the Discipline

• Regression

 $Y_i = \alpha + \beta T_i + \gamma M_i + \delta X_i + \epsilon_i$

- Each coefficient is interpreted as a causal effect
- Sometimes, it's called marginal effect
- Idea: increase T_i by one unit while holding M_i and X_i constant
- The Problem: Post-treatment bias
- If you change T_i , that may also change M_i
- Usual advice: only include causally prior (or pre-treatment) variables
- But, then you lose causal mechanisms!

Statistical Framework of Causal Inference

- Units: *i* = 1, ..., *n*
- "Treatment": $T_i = 1$ if treated, $T_i = 0$ otherwise
- Observed outcome: Y_i
- Pre-treatment covariates: X_i
- Potential outcomes: $Y_i(1)$ and $Y_i(0)$ where $Y_i = Y_i(T_i)$

Voters	Contact	Turr	nout	Age	Party ID
i	T_i	$Y_{i}(1)$	$Y_{i}(0)$	X_i	X_i
1	1	1	?	20	D
2	0	?	0	55	R
3	0	?	1	40	R
:	÷	÷	÷	÷	÷
n	1	0	?	62	D

• Causal effect: $Y_i(1) - Y_i(0)$

```
Kosuke Imai (Princeton)
```

Causal Mechanisms

April 13, 2009 9 / 26

Notation for Causal Mediation Analysis

- Binary treatment (can be generalized): $T_i \in \{0, 1\}$
- Mediator: *M_i*
- Outcome: Y_i
- Observed covariates: X_i
- Potential mediators: $M_i(t)$ where $M_i = M_i(T_i)$
- Potential outcomes: $Y_i(t, m)$ where $Y_i = Y_i(T_i, M_i(T_i))$

Defining and Interpreting Causal Mediation Effects

• Total causal effect:

$$\tau_i \equiv Y_i(1, M_i(1)) - Y_i(0, M_i(0))$$

• Causal mediation effects:

$$\delta_i(t) \equiv Y_i(t, M_i(1)) - Y_i(t, M_i(0))$$

- Change the mediator from M_i(0) to M_i(1) while holding the treatment constant at t
- Indirect effect of the treatment on the outcome through the mediator under treatment status *t*
- $Y_i(t, M_i(t))$ is observable but $Y_i(t, M_i(1 t))$ is not
- Different from *controlled* direct effects: $Y_i(t, m) Y_i(t, m')$
- Not applicable if the mediator is manipulated

|--|

• Direct effects:

$$\zeta_i(t) \equiv Y_i(1, M_i(t)) - Y_i(0, M_i(t))$$

- Change the treatment from 0 to 1 while holding the mediator constant at M_i(t)
- Total effect = mediation (indirect) effect + direct effect:

$$au_i = \delta_i(t) + \zeta_i(1-t) = \frac{1}{2} \sum_{t=0}^{1} \{\delta_i(t) + \zeta_i(t)\}$$

• Quantities of interest: Average Causal Mediation Effects,

$$\bar{\delta}(t) \equiv \mathbb{E}(\delta_i(t)) = \mathbb{E}\{Y_i(t, M_i(1)) - Y_i(t, M_i(0))\}$$

The Proposed Identification Assumption

Assumption 1 (Sequential Ignorability)

$$\{Y_i(t', m), M_i(t)\} \perp T_i \mid X_i = x,$$

$$Y_i(t', m) \perp M_i \mid T_i = t, X_i = x$$

- { $Y_i(t, m), M_i(t)$ } $\perp T_i = t \mid X_i = x$ is not sufficient
- $Y_i(t, m) \perp M_i \mid T_i = t, X_i = x$ is not sufficient
- Weaker than Pearl (2001) if the treatment is randomized
- Cannot condition on post-treatment confounders that are causally prior to the mediator
- If such confounders are exist, an additional assumption, e.g., no-interaction assumption, is necessary (Robins)

Causal Mechanisms

April 13, 2009 13 / 26

Nonparametric Identification and Inference

Theorem 1 (Nonparametric Identification)

Under Assumption 1,

$$\bar{\delta}(t) = \int \int \mathbb{E}(Y_i \mid M_i, T_i = t, X_i) \{ dP(M_i \mid T_i = 1, X_i) - dP(M_i \mid T_i = 0, X_i) \} dP(X_i),$$

$$\bar{\zeta}(t) = \int \int \{ \mathbb{E}(Y_i \mid M_i, T_i = 1, X_i) - \mathbb{E}(Y_i \mid M_i, T_i = 0, X_i) \} dP(M_i \mid T_i = t, X_i) dP(X_i).$$

• Two regressions:

$$\mu_{tm}(x) \equiv \mathbb{E}(Y_i \mid T_i = t, M_i = m, X_i = x),$$

$$\lambda_t(x) \equiv f(M_i \mid T_i = t, X_i = x).$$

• When M_i is discrete, $\lambda_{tm}(x) \equiv \Pr(M_i = m \mid T_i = t, X_i = x)$, and

$$\hat{\delta}(t) = \frac{1}{n} \left\{ \sum_{i=1}^{n} \sum_{m=0}^{J-1} \hat{\mu}_{tm}(X_i) \left(\hat{\lambda}_{1m}(X_i) - \hat{\lambda}_{0m}(X_i) \right) \right\}.$$

Linear Structural Equation Model

Theorem 2 (Identification under LSEM) Consider the following linear structural equation model

> $M_i = \alpha_2 + \beta_2 T_i + \epsilon_{2i},$ $Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \epsilon_{3i}.$

Under Assumption 1, the average causal mediation effects are identified as $\bar{\delta}(0) = \bar{\delta}(1) = \beta_2 \gamma$.

- Run two regressions and multiply two coefficients (Baron-Kenny)!
- No need to run: $Y_i = \alpha_1 + \beta_1 T_i + \epsilon_{1i}$
- Direct effect: β_3
- Total effect: $\beta_2 \gamma + \beta_3$

```
Kosuke Imai (Princeton)
```

Causal Mechanisms

April 13, 2009 15 / 26

• Relaxing the no-interaction assumption:

$$Y_i = \alpha_3 + \beta_3 T_i + \gamma M_i + \kappa T_i M_i + \epsilon_{2i}$$

- Then, $\bar{\delta}(t) = \beta_2(\gamma + t\kappa)$
- The product formula applies to the nonparametric identification with a binary mediator

$$\bar{\delta}(t) = \{ \mathbb{E}(Y_i \mid M_i = 1, T_i = t, X_i) - \mathbb{E}(Y_i \mid M_i = 0, T_i = t, X_i) \} \\ \times \{ \Pr(M_i = 1 \mid T_i = 1, X_i) - \Pr(M_i = 1 \mid T_i = 0, X_i) \}$$

- The sequential ignorability assumption is often too strong
- Need to assess the robustness of findings via sensitivity analysis
- Question: How large a departure from the key assumption must occur for the conclusions to no longer hold?
- Parametric sensitivity analysis by assuming

$$\{Y_i(t',m), M_i(t)\} \perp T_i \mid X_i = x$$

but not

$$Y_i(t', m) \perp M_i \mid T_i = t, X_i = x$$

• Possible existence of unobserved pre-treatment confounder

Kosuke Imai (Princeton)	Causal Mechanisms	April 13, 2009	17 / 26

Parametric Sensitivity Analysis

- Sensitivity parameter: $\rho \equiv Corr(\epsilon_{2i}, \epsilon_{3i})$
- Sequential ignorability implies $\rho = 0$
- Set ρ to different values and see how mediation effects change

Theorem 3 (Identification with a Given Error Correlation)

$$\bar{\delta}(\mathbf{0}) = \bar{\delta}(\mathbf{1}) = \beta_2 \left(\frac{\sigma_{12}}{\sigma_2^2} - \frac{\rho}{\sigma_2} \sqrt{\frac{1}{1 - \rho^2} \left(\sigma_1^2 - \frac{\sigma_{12}^2}{\sigma_2^2} \right)} \right)$$

where $\sigma_j^2 \equiv \operatorname{var}(\epsilon_{ji})$ for j = 1, 2 and $\sigma_{12} \equiv \operatorname{cov}(\epsilon_{1i}, \epsilon_{2i})$.

- When do my results go away completely?
- $\overline{\delta}(t) = 0$ if and only if $\rho = \text{Corr}(\epsilon_{1i}, \epsilon_{2i})$ (easy to compute!)

Facilitating Interpretation

- How big is ρ ?
- An unobserved (pre-treatment) confounder formulation:

$$\epsilon_{2i} = \lambda_2 U_i + \epsilon'_{2i}$$
 and $\epsilon_{3i} = \lambda_3 U_i + \epsilon'_{3i}$,

- Assume $Y_i(t', m) \perp M_i \mid T_i = t, U_i = u$
- Assume also $\epsilon'_{2i} \perp U_i$ and $\epsilon'_{3i} \perp U_i$
- Proportion of previously unexplained variance explained by the unobserved confounder

$$R_M^{2*} \equiv \frac{\operatorname{var}(\epsilon_{2i}) - \operatorname{var}(\epsilon'_{2i})}{\operatorname{var}(\epsilon_{2i})}$$
 and $R_Y^{2*} \equiv \frac{\operatorname{var}(\epsilon_{3i}) - \operatorname{var}(\epsilon'_{3i})}{\operatorname{var}(\epsilon_{3i})}$

Kosuke Imai (Princeton)

Causal Mechanisms

April 13, 2009 19 / 26

 Proportion of original variance explained by the unobserved confounder

$$\widetilde{R}_{M}^{2} \equiv \frac{\operatorname{var}(\epsilon_{2i}) - \operatorname{var}(\epsilon_{2i}')}{\operatorname{var}(M_{i})}$$
 and $\widetilde{R}_{Y}^{2} \equiv \frac{\operatorname{var}(\epsilon_{3i}) - \operatorname{var}(\epsilon_{3i}')}{\operatorname{var}(Y_{i})}$

• Specify sgn($\lambda_2 \lambda_2$) and R_M^{*2} , R_Y^{*2} (or $\tilde{R}_M^2, \tilde{R}_Y^2$)

$$\rho = \operatorname{sgn}(\lambda_2 \lambda_3) R_M^* R_Y^* = \frac{\operatorname{sgn}(\lambda_2 \lambda_3) \widetilde{R}_M \widetilde{R}_Y}{\sqrt{(1 - R_M^2)(1 - R_Y^2)}},$$

where R_M^2 and R_Y^2 are based on

$$\begin{aligned} \mathbf{M}_i &= \alpha_2 + \beta_2 \, \mathbf{T}_i + \epsilon_{2i} \\ \mathbf{Y}_i &= \alpha_3 + \beta_3 \, \mathbf{T}_i + \gamma \, \mathbf{M}_i + \epsilon_{3i} \end{aligned}$$

Political Psychology Experiment: Nelson et al. (APSR)

- How does media framing affect citizens' political opinions?
- News stories about the Ku Klux Klan rally in Ohio
- Free speech frame ($T_i = 0$) and public order frame ($T_i = 1$)
- Randomized experiment with the sample size = 136
- Mediator: a scale measuring general attitudes about the importance of public order
- Outcome: a scale measuring tolerance for the Klan rally
- Expected findings: negative mediation effects

Kosuke Imai (Princeton)

Causal Mechanisms

April 13, 2009 21 / 26

Analysis under Sequential Ignorability

	Parametric	Nonparametric
Average Mediation Effects		
Free speech frame $\hat{\delta}(0)$	-0.451	-0.374
	[-0.871, -0.031]	[-0.823, 0.074]
Public order frame $\hat{\delta}(1)$	-0.566	-0.596
	[-1.081, -0.050]	[-1.168, -0.024]
Average Total Effect $\hat{\tau}$	-0.540	-0.627
	[-1.207, 0.127]	[-1.153, -0.099]
With the no-interaction ass	umption	
Average Mediation Effect	-0.510	
$\hat{\delta}(0) = \hat{\delta}(1)$	[-0.969, -0.051]	
Average Total Effect $\hat{\tau}$	-0.540	
	[-1.206, 0.126]	

Parametric Sensitivity Analysis

• Unobserved pre-treatment confounder (e.g., political ideology)

Proportion of unexplained variance explained by an unobserved confounder

Concluding Remarks and Work in Progress

- Quantitative analysis can be used to identify causal mechanisms!
- Estimate causal mediation effects rather than marginal effects
- Wide applications in social science disciplines
- Generalization: identification, inference, and sensitivity analysis
- linear and nonlinear relationships
- parametric and nonparametric models
- continuous and discrete mediators
- various outcome data types
- multiple mediators
- development of easy-to-use statistical software