Causal Interaction in High Dimension

Naoki Egami

Kosuke Imai

Princeton University

Talk at Asian Political Methodology Conference
Tsingha University, Beijing
January 8, 2016

Interaction Effects and Causal Heterogeneity

Moderation

- How do treatment effects vary across individuals?
- Who benefits from (or is harmed by) the treatment?
- Interaction between treatment and pre-treatment covariates

Causal interaction

- What aspects of a treatment are responsible for causal effects?
- What combination of treatments is efficacious?
- Interaction between treatment variables

Individualized treatment regimes

What combination of treatments is optimal for a given individual?

Causal Interaction in High Dimension

- High dimension = many treatments, each having multiple levels
- A motivating application: Conjoint analysis (Hainmueller et al. 2014)
 - survey experiments to measure immigration preferences
 - a representative sample of 1,396 American adults
 - each respondent evaluates 5 pairs of immigirant profiles
 - gender², education⁷, origin¹⁰, experience⁴, plan⁴, language⁴, profession¹¹, application reason³, prior trips⁵
 - Over 1 million treatment combinations!
 - What combinations of immigrant characteristics make them preferred?
- Too many treatment combinations → Need for an effective summary
- Interaction effects play an essential role

Two Interpretations of Causal Interaction

Conditional effect interpretation:

- Does the effect of one treatment change as we vary the value of another treatment?
- Does the effect of being black change depending on whether an applicant is male or female?
- Useful for testing moderation among treatments

2 Interactive effect interpretation:

- Does a combination of treatments induce an *additional effect* beyond the sum of separate effects attributable to each treatment?
- Does being a black female induce an additional effect beyond the effect of being black and that of being female?
- Useful for finding efficacious treatment combinations in high dimension

An Illustration in the 2×2 Case

- Two binary treatments: A and B
- Potential outcomes: Y(a, b) where $a, b \in \{0, 1\}$
- Conditional effect interpretation:

$$\underbrace{[Y(1,1)-Y(0,1)]}_{\text{effect of }A\text{ when }B=1} - \underbrace{[Y(1,0)-Y(0,0)]}_{\text{effect of }A\text{ when }B=0}$$

- → requires the specification of moderator
- Interactive effect interpretation:

$$\underbrace{[Y(1,1)-Y(0,0)]}_{\text{effect of }A \text{ and }B} - \underbrace{[Y(1,0)-Y(0,0)]}_{\text{effect of }A \text{ when }B=0} - \underbrace{[Y(0,1)-Y(0,0)]}_{\text{effect of }B \text{ when }A=0}$$

- → requires the specification of baseline condition
- The same quantity but two different interpretations

Difficulty of the Conventional Approach

- Lack of invariance to the baseline condition
 → Inference depends on the choice of baseline condition
- 3×3 example:
 - ullet Treatment $A \in \{a_0, a_1, a_2\}$ and Treatment $B \in \{b_0, b_1, b_2\}$
 - Regression model with the baseline condition (a_0, b_0) :

$$\mathbb{E}(Y \mid A, B) = 1 + a_1^* + a_2^* + b_2^* + a_1^* b_2^* + 2a_2^* b_2^* + 3a_2^* b_1^*$$

- Interaction effect for (a_2, b_2) > Interaction effect for (a_1, b_2)
- Another equivalent model with the baseline condition (a_0, b_1) :

$$\mathbb{E}(Y \mid A, B) = 1 + a_1^* + 4a_2^* + b_2^* + a_1^* b_2^* - a_2^* b_2^* - 3a_2^* b_0^*$$

- Interaction effect for (a_2, b_2) < Interaction effect for (a_1, b_2)
- Interaction effect for (a_2, b_1) is zero under the second model
- All interaction effects with at least one baseline value are zero

Empirical Illustration: Lack of Invariance

- Linear regression with main effects and two-way interactions
- Baseline: lowest levels of job experiences and education

	Education							
Job experience	None	4th grade	8th grade	High school	Two-year college	College	Graduate	
None	0 (baseline)	0	0	0	0	0	0	
1–2 years	0	0.009 (0.063)	-0.019 (0.063)	-0.032 (0.063)	0.100 (0.064)	-0.044 (0.064)	-0.064 (0.063)	
3–5 years	0	0.016 (0.063)	0.056 (0.064)	0.165 (0.064)	0.107 (0.064)	0.010 (0.065)	0.117 (0.063)	
> 5 years	0	-0.050 (0.064)	0.126 (0.064)	0.042 (0.063)	0.058 (0.064)	-0.094 (0.064)	0.015 (0.064)	

The Effects of Changing the Baseline Condition

- Same linear regression but different baseline
- Baseline: highest levels of job experiences and education

	Education							
Job	None	4th	8th	High	Two-year	College	Graduate	
experience	None	grade	grade	school	college	College	Graduate	
None	0.015	0.065	-0.111	-0.027	-0.043	0.109	0	
None	(0.064)	(0.062)	(0.064)	(0.061)	(0.063)	(0.063))	
1 0	0.078	0.138	-0.066	0.006	0.120	0.129	0	
1–2 years	(0.064)	(0.062)	(0.062)	(0.061)	(0.062)	(0.062)		
2 E	-0.102	-0.036	-0.172	0.021	-0.054	0.002	0	
3–5 years	(0.062)	(0.062)	(0.063)	(0.062)	(0.061)	(0.062))	
> E voors	0	0	0	0	0	0	0	
> 5 years							(baseline)	

The Contributions of the Paper

- Problems of the conventional approach:
 - Lack of invariance to the choice of baseline condition
 - Difficulty of interpretation for higher-order interaction

- Solution: Average Marginal Treatment Interaction Effect
 - invariant to baseline condition
 - same, intuitive interpretation even for high dimension
 - simple estimation procedure

Reanalysis of the immigration survey experiment

Two-way Causal Interaction

Two factorial treatments:

$$A \in \mathcal{A} = \{a_0, a_1, \dots, a_{D_A - 1}\}$$

 $B \in \mathcal{B} = \{b_0, b_1, \dots, b_{D_B - 1}\}$

- Assumption: Full factorial design
 - Randomization of treatment assignment

$$\{Y(a_{\ell},b_m)\}_{a_{\ell}\in\mathcal{A},b_m\in\mathcal{B}}$$
 $\perp \!\!\! \perp$ $\{A,B\}$

Non-zero probability for all treatment combination

$$\Pr(A = a_{\ell}, B = b_m) > 0 \text{ for all } a_{\ell} \in \mathcal{A} \text{ and } b_m \in \mathcal{B}$$

- Fractional factorial design not allowed
 - Use a small non-zero assignment probability
 - Pocus on a subsample
 - Combine treatments

Non-Interaction Effects of Interest

- Average Treatment Combination Effect (ATCE):
 - Average effect of treatment combination $(A, B) = (a_{\ell}, b_m)$ relative to the baseline condition $(A, B) = (a_0, b_0)$

$$\tau(a_{\ell}, b_m; a_0, b_0) \equiv \mathbb{E}\{Y(a_{\ell}, b_m) - Y(a_0, b_0)\}$$

- Which treatment combination is most efficacious?
- Average Marginal Treatment Effect (AMTE; Hainmueller et al. 2014):
 - Average effect of treatment $A = a_{\ell}$ relative to the baseline condition $A = a_0$ averaging over the other treatment B

$$\psi(a_{\ell},a_0) \equiv \int_{\mathcal{B}} \mathbb{E}\{Y(a_{\ell},B)-Y(a_0,B)\}dF(B)$$

• Which treatment is effective on average?

The Conventional Approach to Causal Interaction

Average Treatment Interaction Effect (ATIE):

$$\xi(a_{\ell},b_{m};a_{0},b_{0}) \equiv \mathbb{E}\{Y(a_{\ell},b_{m})-Y(a_{0},b_{m})-Y(a_{\ell},b_{0})+Y(a_{0},b_{0})\}$$

• Conditional effect interpretation:

$$\underbrace{\mathbb{E}\{Y(a_{\ell},b_m)-Y(a_0,b_m)\}}_{\text{Effect of }A=a_{\ell}\text{ when }B=b_m}-\underbrace{\mathbb{E}\{Y(a_{\ell},b_0)-Y(a_0,b_0)\}}_{\text{Effect of }A=a_{\ell}\text{ when }B=b_0}$$

Interactive effect interpretation:

$$\underbrace{\tau(a_{\ell},b_{m};a_{0},b_{0})}_{\text{ATCE}} - \underbrace{\mathbb{E}\{Y(a_{\ell},b_{0})-Y(a_{0},b_{0})\}}_{\text{Effect of }A=a_{\ell} \text{ when }B=b_{0}} - \underbrace{\mathbb{E}\{Y(a_{0},b_{m})-Y(a_{0},b_{0})\}}_{\text{Effect of }B=b_{m} \text{ when }A=a_{0}}$$

• Estimation: Linear regression with interaction terms

The New Causal Interaction Effect

Average Marginal Treatment Interaction Effect (AMTIE):

$$\pi \big(a_{\ell}, b_m; a_0, b_0 \big) \equiv \underbrace{\tau \big(a_{\ell}, b_m; a_0, b_0 \big)}_{\text{ATCE of } (A, B) = (a_{\ell}, b_m)} - \underbrace{\psi \big(a_{\ell}, a_0 \big)}_{\text{AMTE of } a_{\ell}} - \underbrace{\psi \big(b_m, b_0 \big)}_{\text{AMTE of } b_m}$$

- Interactive effect interpretation: additional effect induced by $A=a_\ell$ and $B=b_m$ together beyond the separate effect of $A=a_\ell$ and that of $B=b_m$
- Compare this with ATIE:

$$\underbrace{\tau(a_{\ell},b_m;a_0,b_0)}_{\text{ATCE}} - \underbrace{\mathbb{E}\{Y(a_{\ell},b_0)-Y(a_0,b_0)\}}_{\text{Effect of }A=a_{\ell} \text{ when }B=b_0} - \underbrace{\mathbb{E}\{Y(a_0,b_m)-Y(a_0,b_0)\}}_{\text{Effect of }B=b_m \text{ when }A=a_0}$$

- We prove that the AMTIEs are both interval and order invariant
- The AMTIEs do depend on the distribution of treatment assignment
 - specified by one's experimental design
 - motivated by the target population

AMTIE is Invariant to the Choice of Baseline Condition

	Education						
Job	None	4th	8th	High	Two-year	Collogo	Graduate
experience	None	grade	grade	school	college	College	Graudate
None	0	-0.004	-0.028	-0.035	-0.031	0.012	-0.010
1–2 years	-0.001	-0.001	-0.025	-0.040	0.024	-0.009	-0.044
3–5 years	-0.040	-0.019	-0.042	0.031	-0.026	-0.022	0.024
> 5 years	-0.014	-0.031	0.041	-0.011	-0.021	-0.036	-0.024

AMTIE is Invariant to the Choice of Baseline Condition

	Education							
Job	None	4th	8th	High	Two-year	Collogo	Graduate	
experience	None	grade	grade	school	college	College	Graduate	
None	0.024	0.020	-0.004	-0.011	-0.007	0.036	0.014	
1–2 years	0.023	0.023	-0.001	-0.016	0.048	0.015	-0.020	
3–5 years	-0.016	0.005	-0.018	0.055	-0.002	0.002	0.048	
> 5 years	0.010	-0.007	0.065	0.013	0.003	-0.012	0	

The Relationships between the ATIE and the AMTIE

• The **AMTIE** is a linear function of the ATIEs:

$$\pi(a_{\ell}, b_{m}; a_{0}, b_{0}) = \xi(a_{\ell}, b_{m}; a_{0}, b_{0}) - \sum_{a \in \mathcal{A}} \Pr(A_{i} = a) \xi(a, b_{m}; a_{0}, b_{0})$$
$$- \sum_{b \in \mathcal{B}} \Pr(B_{i} = b) \xi(a_{\ell}, b; a_{0}, b_{0})$$

2 The ATIE is also a linear function of the **AMTIE**s:

$$\xi(a_{\ell},b_{m};a_{0},b_{0}) = \pi(a_{\ell},b_{m};a_{0},b_{0}) - \pi(a_{\ell},b_{0};a_{0},b_{0}) - \pi(a_{0},b_{m};a_{0},b_{0})$$

- Absence of causal interaction:
 All of the AMTIEs are zero if and only if all of the ATIEs are zero
- The AMTIEs can be estimated by first estimating the ATIEs

Higher-order Causal Interaction

- *J* factorial treatments: $\mathbf{T} = (T_1, \dots, T_J)$
- Assumptions:
 - Full factorial design

$$Y(\mathbf{t})$$
 $\perp \!\!\! \perp$ \mathbf{T} and $Pr(\mathbf{T} = \mathbf{t}) > 0$ for all \mathbf{t}

Independent treatment assignment

$$T_j \perp \perp \mathbf{T}_{-j}$$
 for all j

- Assumption 2 is not necessary for identification but considerably simplifies estimation
- We are interested in the K-way interaction where $K \leq J$
- We extend all the results for the 2-way interaction to this general case

Difficulty of Interpreting the Higher-order ATIE

ullet Generalize the 2-way ATIE by marginalizing the other treatments $\underline{\mathbf{T}}^{1:2}$

$$\xi_{1:2}(t_1, t_2; t_{01}, t_{02}) \equiv \int \mathbb{E} \left\{ Y(t_1, t_2, \underline{\mathbf{T}}^{1:2}) - Y(t_{01}, t_2, \underline{\mathbf{T}}^{1:2}) - Y(t_{01}, t_{02}, \underline{\mathbf{T}}^{1:2}) \right\} dF(\underline{\mathbf{T}}^{1:2})$$

In the literature, the 3-way ATIE is defined as

$$\equiv \underbrace{\xi_{1:3}(t_1,t_2,t_3;t_{01},t_{02},t_{03})}_{\text{2-way ATIE when } T_3=t_3} - \underbrace{\xi_{1:2}(t_1,t_2;t_{01},t_{02}\mid T_3=t_{03})}_{\text{2-way ATIE when } T_3=t_3} - \underbrace{\xi_{1:2}(t_1,t_2;t_{01},t_{02}\mid T_3=t_{03})}_{\text{2-way ATIE when } T_3=t_{03}}$$

- Higher-order ATIEs are similarly defined sequentially
- This representation is based on the conditional effect interpretation
- Problem: the conditional effect of conditional effects!

The K-way Average Marginal Treatment Interaction Effect

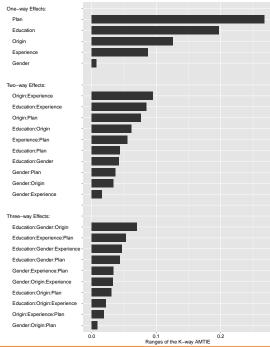
- Definition: the difference between the ATCE and the sum of lower-order AMTIEs
- Interactive effect interpretation
- Example: 3-way **AMTIE**, $\pi_{1:3}(t_1, t_2, t_3; t_{01}, t_{02}, t_{03})$, equals

$$\underbrace{\tau_{1:3}(t_1,t_2,t_3;t_{01},t_{02},t_{03})}_{\text{ATCE}} \\ - \underbrace{\left\{\pi_{1:2}(t_1,t_2;t_{01},t_{02}) + \pi_{2:3}(t_2,t_3;t_{02},t_{03}) + \pi_{1:3}(t_1,t_3;t_{01},t_{03})\right\}}_{\text{sum of 2-way AMTIEs}} \\ - \underbrace{\left\{\psi(t_1;t_{01}) + \psi(t_2;t_{02}) + \psi(t_3;t_{03})\right\}}_{\text{sum of (1-way) AMTEs}}$$

- Properties:
 - **1** K-way ATCE = the sum of all K-way and lower-order **AMTIE**s
 - 2 Interval and order invariance to the baseline condition
 - 3 Derive the relationships between the AMTIEs and ATIEs for any order

Empirical Analysis of the Immigration Survey Experiment

- 5 factors (gender², education⁷, origin¹⁰, experience⁴, plan⁴)
 - full factorial design assumption
 - 2 computational tractability
- Matched-pair conjoint analysis: randomly choose one profile
- Binary outcome: whether a profile is selected
- Model with one-way, two-way, and three-way interaction terms
- p = 1,575 and n = 6,980
- Curse of dimensionality ⇒ sparcity assumption
- Support vector machine with a lasso constraint (Imai & Ratkovic, 2013)
- Under-identified model that includes baseline conditions
- 99 non-zero and 1,476 zero coefficients
- Cross-validation for selecting a tuning parameter
- FindIt: Finding heterogeneous treatment effects



- Range of AMTIEs: importance of each factor and factor interaction
- Sparcity-of-effects principle
- gender appears to play a significant role in three-way interactions

Decomposing the Average Treatment Combination Effect

• Two-way effect example (origin × experience):

$$\underbrace{\tau(\text{Somalia, 1-2 years; India, None})}_{-3.74} = \underbrace{\psi(\text{Somalia; India})}_{-5.14} + \underbrace{\psi(1-2\text{years; None})}_{5.12} + \underbrace{\pi(\text{Somalia, 1-2 years; India, None})}_{-3.72}$$

ullet Three-way examples (education imes gender imes origin):

Concluding Remarks

- Interaction effects play an essential role in causal heterogeneity
 - moderation
 - 2 causal interaction
- Two interpretations of causal interaction
 - conditional effect interpretation (problematic in high dimension)
 - interactive effect interpretation
- Average Marginal Treatment Interaction Effect
 - interactive effect in high-dimension
 - invariant to baseline condition
 - enables effect decomposition
 - ◆ effective analysis of interactions in high-dimension
- Estimation challenges in high dimension
 - group lasso, hierarchical interaction
 - post-selection inference

References

- Imai, Kosuke and Marc Ratkovic. (2013). "Estimating Treatment Effect Heterogeneity in Randomized Program Evaluation." Annals of Applied Statistics, Vol. 7, No. 1 (March), pp. 443–470.
- Egami, Naoki and Kosuke Imai. (2015). "Causal Interaction in High Dimension." Working Paper available at http://imai.princeton.edu/research/int.html

Send comments and suggestions to negami@Princeton.Edu or kimai@Princeton.Edu