## Fast Estimation of Ideal Points with Massive Data

Kosuke Imai $\dagger$ James Lo $\dagger$ Jonathan Olmsted $\ddagger$<br>$\dagger$ Princeton University<br>$\ddagger$ NPD Group

Asian Political Methodology Conference

January 9, 2015

## Motivation

- Since NOMINATE, widespread interest in spatial voting models
- Extensions compare actors across time and institutions
- Presidents, legislators, and justices (Bailey 2007)
- State legislators and representatives (Shor and McCarty 2011)
- Voters and representatives (Bafumi and Herron 2010)
- Agencies, presidents, and representatives (Clinton et al 2012)
- But computational challenges are order of magnitude larger
- MCMC estimation extremely slow (Martin and Quinn 2002)
- Shortcuts using subsets of data (Shor and McCarty 2011)
- Compromise in the model (Bailey 2007)
- Difficulty in convergence (Bafumi and Herron 2010)
- Supercomputer center usage (Carroll et al 2009)
- Models attractive but practically unusable with large data sets


## Ideal Points from Large Data Sets

|  | \# of subjects | \# of items | Data types |
| :--- | ---: | ---: | :---: |
| DW-NOMINATE scores (1789-2012) | 37,511 | 46,379 | roll calls |
| Common Space scores (1789-2012) | 11,833 | 90,609 | roll calls |
| Martin and Quinn scores (1937-2013) | 697 | 5,164 | votes |
| Gerber and Lewis (2004) | 2.8 million | 12 | votes |
| Bailey (2007) | 27,795 | 2,750 | roll calls \& votes |
| Bafumi and Herron (2010) | 8,848 | 4,391 | survey \& roll calls |
| Shor and McCarty (2011) | 6,201 | 5,747 | survey \& roll calls |
| Tausanovitch and Warshaw (2013) | 275,000 | 311 | survey |
| Peress (2013) | 700 | 16,000 | co-sponsorship \& roll calls |
| Bonica (2014) | 4.2 million | 78,363 | contribution |



Courtesy of Will Lowe

## Our Solution

- EM algorithms for exact or approximate posterior inference
- deterministic algorithm
- variational EM algorithm for approximate inference
- Derive EM algorithms for popular bayesian ideal point models
(1) Standard binary choice (Clinton, Jackman, Rivers 2004)
(2) Ordinal choice (Jackman and Treier 2008)

3 Dynamic random walk (Martin and Quinn 2002)
(9) Hierarchical model (Bafumi et al. 2005)

- Parametric bootstrap for uncertainty (Lewis and Poole 2004)
- EM algorithms yield nearly identical results to standard estimates
- Fast and scalable algorithms
- 5.5 day processes run in under 10 seconds
- Simulated data $>500$ times in size run in under 25 minutes


## Standard Two-Parameter Ideal Point Model

- Implemented as ideal() in R, similar to wnominate() and oc()
- Legislators $i=1 \ldots N$ and roll call votes $j=1 \ldots$ J
- Observed votes: $y_{i j} \in\{0,1\}$
- Bill parameters: $\tilde{\boldsymbol{\beta}}_{j}^{\top}=\left(\alpha_{j}, \boldsymbol{\beta}_{j}^{\top}\right)$
- Ideal point: $\tilde{\mathbf{x}}_{i}^{\top}=\left(1, \mathbf{x}_{i}^{\top}\right)$
- Latent propensity to vote yea:

$$
y_{i j}^{*}=\tilde{\mathbf{x}}_{i}^{\top} \tilde{\boldsymbol{\beta}}_{j}+\epsilon_{i j} \quad \text { with } y_{i j}=\mathbf{1}\left\{y_{i j}^{*}>0\right\}
$$

- Posterior distribution (with normal priors on $\tilde{\mathbf{x}}_{i}^{\top}$ and $\tilde{\boldsymbol{\beta}}_{j}^{\top}$ ):

$$
\begin{aligned}
& p\left(\mathbf{Y}^{*},\left\{\mathbf{x}_{i}\right\}_{i=1}^{N},\left\{\tilde{\boldsymbol{\beta}}_{j}\right\}_{j=1}^{J} \mid \mathbf{Y}\right) \\
\propto & \prod_{i=1}^{N} \prod_{j=1}^{J}\left(\mathbf{1}\left\{y_{i j}^{*}>0\right\} \mathbf{1}\left\{y_{i j}=1\right\}+\mathbf{1}\left\{y_{i j}^{*} \leq 0\right\} \mathbf{1}\left\{y_{i j}=0\right\}\right) \phi_{1}\left(y_{i j}^{*} ; \tilde{\mathbf{x}}_{i}^{\top} \tilde{\boldsymbol{\beta}}_{j}, 1\right) \\
& \times \prod_{i=1}^{N} \phi_{K}\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}}\right) \prod_{j=1}^{J} \phi_{K+1}\left(\tilde{\boldsymbol{\beta}}_{j} ; \boldsymbol{\mu}_{\tilde{\boldsymbol{\beta}}}, \boldsymbol{\Sigma}_{\tilde{\boldsymbol{\beta}}}\right)
\end{aligned}
$$

## EM Algorithm for Exact Posterior Inference

- Treat $y_{i j}^{*}$ as missing data and $\tilde{\boldsymbol{\beta}}$ and $\mathbf{x}_{i}$ as parameters
- Iterative algorithm with starting values for $\left\{\tilde{\boldsymbol{\beta}}_{j}\right\}_{j=1}^{J}$ and $\left\{\mathbf{x}_{i}\right\}_{i=1}^{N}$
- E-step: compute the " $Q$-function": $Q\left(\left\{\mathbf{x}_{i}\right\}_{i=1}^{N},\left\{\tilde{\boldsymbol{\beta}}_{j}\right\}_{j=1}^{J}\right)$

$$
=\mathbb{E}\left[\log p\left(\mathbf{Y}^{*},\left\{\mathbf{x}_{i}\right\}_{i=1}^{N},\left\{\tilde{\boldsymbol{\beta}}_{j}\right\}_{j=1}^{J} \mid \mathbf{Y}\right) \mid \mathbf{Y},\left\{\mathbf{x}_{i}^{(t-1)}\right\}_{i=1}^{N},\left\{\tilde{\boldsymbol{\beta}}_{j}^{(t-1)}\right\}_{j=1}^{J}\right]
$$

- compute $y_{i j}^{*(t)}=\mathbb{E}\left(y_{i j}^{*} \mid \mathbf{x}_{i}^{(t-1)}, \tilde{\boldsymbol{\beta}}_{j}^{(t-1)}, y_{i j}\right)$ using a truncated normal
- M-step: maximize $Q$-function
(1) Bayesian regression of $y_{i j}^{*(t)}-\alpha_{j}^{(t-1)}$ on $\boldsymbol{\beta}_{j}^{(t-1)}$
(2) Bayesian regression of $y_{i j}^{*(t)}$ on $\left(1, \mathbf{x}_{i}^{(t)^{\top}}\right.$ )
- Repeat until convergence: correlation of every parameter between two successive iterations is greater than $1-10^{-6}$


## Computational Performance, $102^{\text {nd }}-112^{\text {th }}$ Congress



## Estimated Ideal Points, $112^{\text {th }}$ Congress



## Computational Scalability

Number of Bills: 1,000


Number of Legislators: 500


## Ordinal Ideal Point Model

- A new EM algorithm for the 3-category ordinal choice
- Particularly applicable to Likert scales from survey data
- Collapse response categories if there are more than 3
- Devise a parameter transformation to obtain a closed-form E-step
- Application: Asahi-Todai Elite Survey
- Spans 8 Japanese Upper \& Lower House elections, 2003-2013
- In 6 waves, survey administered to $\mathrm{N}=1,000-2,000$ voters
- Total $N=19,443$ respondents ( 7,734 politicians $+11,709$ voters)
- $J=98$ items, 5-category items collapsed to 3
- Standard MCMC runtime: 4 hours
- Ordinal EM runtime: Under 2 minutes


## Politician Ideal Points, Asahi-Todai Survey

3 category MCMC


5 category MCMC


## Dynamic Ideal Point model

- Dynamic Ideal Point model (Martin and Quinn 2002)
- Flexible dynamic modeling with random walk prior:

$$
x_{i t} \sim N\left(x_{i, t-1}, \omega_{x}^{2}\right)
$$

- Derive a variational EM algorithm for this model
- Approximate inference under the factorization assumption

$$
q\left(\mathbf{Y}^{*},\left\{\mathbf{x}_{i}\right\}_{i=1}^{N},\left\{\tilde{\boldsymbol{\beta}}_{j}\right\}_{t=1}^{T}\right)=\prod_{i=1}^{N} \prod_{t=\underline{I}_{i}}^{\bar{T}_{i}} q\left(y_{i t}^{*}\right) \prod_{i=1}^{N} q\left(\mathbf{x}_{i}\right) \prod_{t=1}^{T} \prod_{j=1}^{J_{t}} q\left(\tilde{\boldsymbol{\beta}}_{j t}\right)
$$

- Application: U.S. Supreme Court MQ Scores
- $N=45$ justices, $J=5,164$ votes, $T=77$ periods
- 9 active justices per term
- MCMCdynamicIRT1d() runtime: 5.5 days
- EM runtime: Under 10 seconds


## Correlation by Justice, US Supreme Court



## Correlation by Term, US Supreme Court



## Scalability and Accuracy of Dynamic VI Model



## Hierarchical Ideal Point Model

- Enables the use of covariates to predict ideal points
- Given:
- index of observed vote: $\ell$
- associated legislators $i[\ell]$ and bills $j[\ell]$
- legislator membership in groups: $g[i[\ell]]$
- observed covariate(s) associated with specific legislator: $z[i[\ell]]$
- Then we get:

$$
\begin{aligned}
y_{\ell}^{*} & =\alpha_{j[\ell]}+\beta_{j[\ell]} x_{i[\ell]}+\epsilon_{\ell} \quad \text { where } \quad \epsilon_{\ell} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1) \\
x_{i[\ell]} & =\gamma_{g[i[\ell]}^{\top} \mathbf{z}_{i[\ell]}+\eta_{i[\ell]} \quad \text { where } \quad \eta_{i[\ell]} \stackrel{\text { indep. }}{\sim} \mathcal{N}\left(0, \sigma_{g[i[\ell]]}^{2}\right)
\end{aligned}
$$

- Parametric time trend model as a special case
- Derive a variational EM algorithm for approximate posterior inference
- DW-NOMINATE runtime: Over 14 hours for 80th-110th Senate
- EM runtime: 8.3 minutes (using 8 threads)


## 80th-110th U.S. Senate Ideal Points

80th-110th US Senate


## Scalability and Accuracy



## Concluding Remarks

- Ideal point models as an essential tool in political science
- Recent trend: scaling across time and institutions
- Need for speed: fast estimation with massive data
- We propose various EM algorithms that:
(1) produce nearly identical results to standard procedures
(2) are much faster: reducing runtime from 6 days to 10 seconds
(3) scale well to even larger data sets
- Open-source R package fastideal will be made available

