Covariate Balancing Propensity Score

Kosuke Imai

Princeton University

June 8, 2012

Causal Inference Symposium (ASA New Jersey Chapter)

Joint work with Marc Ratkovic

Motivation

- Causal inference is a central goal of scientific research
- Randomized experiments are not always possible
 - ⇒ Causal inference in observational studies
- Experiments often lack external validity
 - ⇒ Need to generalize experimental results
- Importance of statistical methods to adjust for confounding factors

Overview of the Talk

- Review: Propensity score
 - conditional probability of treatment assignment
 - propensity score is a balancing score
 - matching and weighting methods
- Problem: Propensity score tautology
 - sensitivity to model misspecification
 - adhoc specification searches
- Solution: Covariate balancing propensity score
 - Estimate propensity score so that covariate balance is optimized
- Evidence: Reanalysis of two prominent critiques
 - Improved performance of propensity score weighting and matching
- Extensions:
 - Non-binary treatment regimes
 - Longitudinal data
 - Generalizing experimental and instrumental variable estimates

Propensity Score of Rosenbaum and Rubin (1983)

- Setup:
 - $T_i \in \{0, 1\}$: binary treatment
 - X_i: pre-treatment covariates
 - $(Y_i(1), Y_i(0))$: potential outcomes
 - $Y_i = Y_i(T_i)$: observed outcomes
- Definition: conditional probability of treatment assignment

$$\pi(X_i) = \Pr(T_i = 1 \mid X_i)$$

Balancing property:

$$T_i \perp \!\!\!\perp X_i \mid \pi(X_i)$$

- Assumptions:
 - Overlap: $0 < \pi(X_i) < 1$
 - 2 Unconfoundedness: $\{Y_i(1), Y_i(0)\} \perp T_i \mid X_i$
- The main result:

$$\{Y_i(1), Y_i(0)\} \perp T_i \mid \pi(X_i)$$

Matching and Weighting via Propensity Score

- Propensity score reduces the dimension of covariates
- But, propensity score must be estimated (more on this later)
- Simple nonparametric adjustments are possible
- Matching
- Subclassification
- Weighting:

$$\frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{T_{i} Y_{i}}{\hat{\pi}(X_{i})} - \frac{(1-T_{i}) Y_{i}}{1-\hat{\pi}(X_{i})} \right\}$$

Doubly-robust estimators (Robins et al.):

$$\frac{1}{n}\sum_{i=1}^{n}\left[\left\{\hat{\mu}(1,X_{i})+\frac{T_{i}(Y_{i}-\hat{\mu}(1,X_{i}))}{\hat{\pi}(X_{i})}\right\}-\left\{\hat{\mu}(0,X_{i})+\frac{(1-T_{i})(Y_{i}-\hat{\mu}(0,X_{i}))}{1-\hat{\pi}(X_{i})}\right\}\right]$$

• They have become standard tools for applied researchers

Propensity Score Tautology

- Propensity score is unknown
- Dimension reduction is purely theoretical: must model T_i given X_i
- Diagnostics: covariate balance checking
- In practice, adhoc specification searches are conducted
- Model misspecification is always possible
- Theory (Rubin et al.): ellipsoidal covariate distributions
 equal percent bias reduction
- Skewed covariates are common in applied settings
- Propensity score methods can be sensitive to misspecification

Kang and Schafer (2007, Statistical Science)

- Simulation study: the deteriorating performance of propensity score weighting methods when the model is misspecified
- Setup:
 - 4 covariates X_i^* : all are *i.i.d.* standard normal
 - Outcome model: linear model
 - Propensity score model: logistic model with linear predictors
 - Misspecification induced by measurement error:
 - $X_{i1} = \exp(X_{i1}^*/2)$
 - $X_{i2} = X_{i2}^*/(1 + \exp(X_{1i}^*) + 10)$
 - $X_{i3} = (X_{i1}^* X_{i3}^* / 25 + 0.6)^3$
 - $X_{i4} = (X_{i1}^* + X_{i4}^* + 20)^2$
- Weighting estimators to be evaluated:
 - Horvitz-Thompson
 - Inverse-probability weighting with normalized weights
 - Weighted least squares regression
 - Doubly-robust least squares regression

Weighting Estimators Do Fine If the Model is Correct

		Bi	as	RM	SE	
Sample size	Estimator	GLM	True	GLM	True	
(1) Both mod	els correct					
	HT	-0.01	0.68	13.07	23.72	
n = 200	IPW	-0.09	-0.11	4.01	4.90	
11 — 200	WLS	0.03	0.03	2.57	2.57	
	DR	0.03	0.03	2.57	2.57	
	HT	-0.03	0.29	4.86	10.52	
n = 1000	IPW	-0.02	-0.01	1.73	2.25	
H = 1000	WLS	-0.00	-0.00	1.14	1.14	
	DR	-0.00	-0.00	1.14	1.14	
(2) Propensity	y score mode	el correct				
	HT	-0.32	-0.17	12.49	23.49	
n = 200	IPW	-0.27	-0.35	3.94	4.90	
11 — 200	WLS	-0.07	-0.07	2.59	2.59	
	DR	-0.07	-0.07	2.59	2.59	
	HT	0.03	0.01	4.93	10.62	
n = 1000	IPW	-0.02	-0.04	1.76	2.26	
n = 1000	WLS	-0.01	-0.01	1.14	1.14	
	DR	-0.01	-0.01	1.14	1.14	

Weighting Estimators Are Sensitive to Misspecification

		Bia	as	RMS	SE
Sample size	Estimator	GLM	True	GLM	True
(3) Outcome	model correc	t			
	HT	24.72	0.25	141.09	23.76
n = 200	IPW	2.69	-0.17	10.51	4.89
11 — 200	WLS	-1.95	0.49	3.86	3.31
	DR	0.01	0.01	2.62	2.56
	HT	69.13	-0.10	1329.31	10.36
n = 1000	IPW	6.20	-0.04	13.74	2.23
n = 1000	WLS	-2.67	0.18	3.08	1.48
	DR	0.05	0.02	4.86	1.15
(4) Both mod	els incorrect				
	HT	25.88	-0.14	186.53	23.65
n = 200	IPW	2.58	-0.24	10.32	4.92
H = 200	WLS	-1.96	0.47	3.86	3.31
	DR	-5.69	0.33	39.54	3.69
	HT	60.60	0.05	1387.53	10.52
n = 1000	IPW	6.18	-0.04	13.40	2.24
n = 1000	WLS	-2.68	0.17	3.09	1.47
	DR	-20.20	0.07	615.05	1.75

Smith and Todd (2005, J. of Econometrics)

- LaLonde (1986; Amer. Econ. Rev.):
 - Randomized evaluation of a job training program
 - Replace experimental control group with another non-treated group
 - Current Population Survey and Panel Study for Income Dynamics
 - Many evaluation estimators didn't recover experimental benchmark
- Dehejia and Wahba (1999; J. of Amer. Stat. Assoc.):
 - Apply propensity score matching
 - Estimates are close to the experimental benchmark
- Smith and Todd (2005):
 - Dehejia & Wahba (DW)'s results are sensitive to model specification
 - They are also sensitive to the selection of comparison sample

Propensity Score Matching Fails Miserably

- One of the most difficult scenarios identified by Smith and Todd:
 - LaLonde experimental sample rather than DW sample
 - Experimental estimate: \$886 (s.e. = 488)
 - PSID sample rather than CPS sample

Evaluation bias:

- Conditional probability of being in the experimental sample
- Comparison between experimental control group and PSID sample
- "True" estimate = 0
- Logistic regression for propensity score
- One-to-one nearest neighbor matching with replacement

Propensity score model	Estimates
Linear	-835
	(886)
Quadratic	-1620
	(1003)
Smith and Todd (2005)	-1910
	(1004)
	4014

Covariate Balancing Propensity Score

- Recall the dual characteristics of propensity score
 - Conditional probability of treatment assignment
 - Covariate balancing score
- Implied moment conditions:
 - Score equation:

$$\mathbb{E}\left\{\frac{T_i\pi'_{\beta}(X_i)}{\pi_{\beta}(X_i)} - \frac{(1-T_i)\pi'_{\beta}(X_i)}{1-\pi_{\beta}(X_i)}\right\} = 0$$

- Balancing condition:
 - For the Average Treatment Effect (ATE)

$$\mathbb{E}\left\{\frac{T_i\widetilde{X}_i}{\pi_{\beta}(X_i)} - \frac{(1-T_i)\widetilde{X}_i}{1-\pi_{\beta}(X_i)}\right\} = 0$$

• For the Average Treatment Effect for the Treated (ATT)

$$\mathbb{E}\left\{T_{i}\widetilde{X}_{i}-\frac{\pi_{\beta}(X_{i})(1-T_{i})\widetilde{X}_{i}}{1-\pi_{\beta}(X_{i})}\right\}=0$$

where $\widetilde{X}_i = f(X_i)$ is any vector-valued function

Generalized Method of Moments (GMM) Framework

- Over-identification: more moment conditions than parameters
- GMM (Hansen 1982):

$$\hat{\beta}_{\mathrm{GMM}} = \underset{\beta \in \Theta}{\operatorname{argmin}} \ \bar{g}_{\beta}(T, X)^{\top} \Sigma_{\beta}(T, X)^{-1} \bar{g}_{\beta}(T, X)$$

where

$$\bar{g}_{\beta}(T,X) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{\left(\begin{array}{c} \frac{T_{i}\pi'_{\beta}(X_{i})}{\pi_{\beta}(X_{i})} - \frac{(1-T_{i})\pi'_{\beta}(X_{i})}{1-\pi_{\beta}(X_{i})} \\ \frac{T_{i}\tilde{X}_{i}}{\pi_{\beta}(X_{i})} - \frac{(1-T_{i})\tilde{X}_{i}}{1-\pi_{\beta}(X_{i})} \end{array}\right)}_{g_{\beta}(T_{i},X_{i})}$$

"Continuous updating" GMM estimator with the following Σ:

$$\Sigma_{\beta}(T,X) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}(g_{\beta}(T_i,X_i)g_{\beta}(T_i,X_i)^{\top} \mid X_i)$$

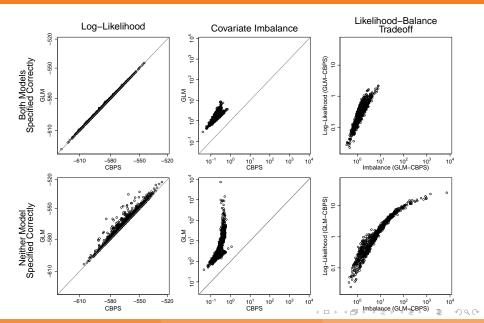
Newton-type optimization algorithm with MLE as starting values

Specification Test

- GMM over-identifying restriction test (Hansen)
- Null hypothesis: propensity score model is correct
- J statistic:

$$J = N \cdot \left\{ \bar{g}_{\hat{\beta}_{\text{GMM}}}(T, X)^{\top} \Sigma_{\hat{\beta}_{\text{GMM}}}(T, X)^{-1} \bar{g}_{\hat{\beta}_{\text{GMM}}}(T, X) \right\} \stackrel{d}{\longrightarrow} \chi^2_{L+M}$$

- Failure to reject the null does not imply the model is correct
- An alternative estimation framework: empirical likelihood


Revisiting Kang and Schafer (2007)

Bias							RM:	SE	
Sample size	Estimator	GLM	Balance	CBPS	True	GLM	Balance	CBPS	True
(1) Both models correct									
	HT	-0.01	2.02	0.73	0.68	13.07	4.65	4.04	23.72
n = 200	IPW	-0.09	0.05	-0.09	-0.11	4.01	3.23	3.23	4.90
H = 200	WLS	0.03	0.03	0.03	0.03	2.57	2.57	2.57	2.57
	DR	0.03	0.03	0.03	0.03	2.57	2.57	2.57	2.57
	HT	-0.03	0.39	0.15	0.29	4.86	1.77	1.80	10.52
<i>n</i> = 1000	IPW	-0.02	0.00	-0.03	-0.01	1.73	1.44	1.45	2.25
	WLS	-0.00	-0.00	-0.00	-0.00	1.14	1.14	1.14	1.14
	DR	-0.00	-0.00	-0.00	-0.00	1.14	1.14	1.14	1.14
(2) Propens	ity score n	nodel c	orrect						
	HT	-0.32	1.88	0.55	-0.17	12.49	4.67	4.06	23.49
n = 200	IPW	-0.27	-0.12	-0.26	-0.35	3.94	3.26	3.27	4.90
H = 200	WLS	-0.07	-0.07	-0.07	-0.07	2.59	2.59	2.59	2.59
	DR	-0.07	-0.07	-0.07	-0.07	2.59	2.59	2.59	2.59
<i>n</i> = 1000	HT	0.03	0.38	0.15	0.01	4.93	1.75	1.79	10.62
	IPW	-0.02	-0.00	-0.03	-0.04	1.76	1.45	1.46	2.26
	WLS	-0.01	-0.01	-0.01	-0.01	1.14	1.14	1.14	1.14
	DR	-0.01	-0.01	-0.01	-0.01	1.14	1.14	1.14	<u></u> 1.14

CBPS Makes Weighting Methods Work Better

			Bias	S	RMSE				
Sample size	Estimator	GLM	Balance	CBPS	True	GLM	Balance	CBPS	True
(3) Outcome model co		orrect							
	HT	24.72	0.33	-0.47	0.25	141.09	4.55	3.70	23.76
n 000	IPW	2.69	-0.71	-0.80	-0.17	10.51	3.50	3.51	4.89
n = 200	WLS	-1.95	-2.01	-1.99	0.49	3.86	3.88	3.88	3.31
	DR	0.01	0.01	0.01	0.01	2.62	2.56	2.56	2.56
	HT	69.13	-2.14	-1.55	-0.10	1329.31	3.12	2.63	10.36
n 1000	IPW	6.20	-0.87	-0.73	-0.04	13.74	1.87	1.80	2.23
n = 1000	WLS	-2.67	-2.68	-2.69	0.18	3.08	3.13	3.14	1.48
	DR	0.05	0.02	0.02	0.02	4.86	1.16	1.16	1.15
(4) Both mo	dels incor	rect							
	HT	25.88	0.39	-0.41	-0.14	186.53	4.64	3.69	23.65
n 000	IPW	2.58	-0.71	-0.80	-0.24	10.32	3.49	3.50	4.92
n = 200	WLS	-1.96	-2.01	-2.00	0.47	3.86	3.88	3.88	3.31
	DR	-5.69	-2.20	-2.18	0.33	39.54	4.22	4.23	3.69
	HT	60.60	-2.16	-1.56	0.05	1387.53	3.11	2.62	10.52
<i>n</i> = 1000	IPW	6.18	-0.87	-0.72	-0.04	13.40	1.86	1.80	2.24
	WLS	-2.68	-2.69	-2.70	0.17	3.09	3.14	3.15	1.47
	DR	-20.20	-2.89	-2.94	0.07	615.05	3.47	3.53	1.75

CBPS Sacrifices Likelihood for Better Balance

Revisiting Smith and Todd (2005)

- Evaluation bias: "true" bias = 0
- CBPS improves propensity score matching across specifications and matching methods
- However, specification test rejects the null

1-to-1	Nearest Ne	ighbor	Optimal 1-to-N Nearest Neighbor			
GLM	Balance	CBPS	GLM	Balance	CBPS	
-835	-559	-302	-885	-257	-38	
(886)	(898)	(873)	(435)	(492)	(488)	
-1620	-967	-1040	-1270	-306	-140	
(1003)	(882)	(831)	(406)	(407)	(392)	
-1910	-1040	-1313	-1029	-672	-32	
(1004)	(860)	(800)	(413)	(387)	(397)	
	GLM -835 (886) -1620 (1003) -1910	GLM Balance -835 -559 (886) (898) -1620 -967 (1003) (882) -1910 -1040	-835 -559 -302 (886) (898) (873) -1620 -967 -1040 (1003) (882) (831) -1910 -1040 -1313	GLM Balance CBPS GLM -835 -559 -302 -885 (886) (898) (873) (435) -1620 -967 -1040 -1270 (1003) (882) (831) (406) -1910 -1040 -1313 -1029	GLM Balance CBPS GLM Balance -835 -559 -302 -885 -257 (886) (898) (873) (435) (492) -1620 -967 -1040 -1270 -306 (1003) (882) (831) (406) (407) -1910 -1040 -1313 -1029 -672	

Standardized Covariate Imbalance

- Covariate imbalance in the (Optimal 1-to-N) matched sample
- Standardized difference-in-means

Linear			Quadratic			Smith & Todd		
GLM	Balance	CBPS	GLM	Balance	CBPS	GLM	Balance	CBPS
-0.060	-0.035	-0.063	-0.060	-0.035	-0.063	-0.031	0.035	-0.013
-0.208	-0.142	-0.126	-0.208	-0.142	-0.126	-0.262	-0.168	-0.108
-0.087	0.005	-0.022	-0.087	0.005	-0.022	-0.082	-0.032	-0.093
0.145	0.028	0.037	0.145	0.028	0.037	0.171	0.031	0.029
0.133	0.089	0.174	0.133	0.089	0.174	0.189	0.095	0.160
-0.090	0.025	0.039	-0.090	0.025	0.039	-0.079	0.011	0.019
-0.118	0.014	0.043	-0.118	0.014	0.043	-0.120	-0.010	0.041
0.104	-0.013	0.000	0.104	-0.013	0.000	0.061	0.034	0.102
0.083	0.051	-0.017	0.083	0.051	-0.017	0.059	0.068	0.022
0.073	-0.023	-0.036	0.073	-0.023	-0.036	0.099	-0.027	-0.098
-326	-342	-345	-293	-307	-297	-295	-231	-296
0.507	0.264	0.312	0.544	0.304	0.300	0.515	0.359	0.383
	-0.060 -0.208 -0.087 0.145 0.133 -0.090 -0.118 0.104 0.083 0.073 -326	GLM Balance -0.060 -0.035 -0.208 -0.142 -0.087 0.005 0.145 0.028 0.133 0.089 -0.090 0.025 -0.118 0.014 0.104 -0.013 0.083 0.051 0.073 -0.023 -326 -342	GLM Balance CBPS -0.060 -0.035 -0.063 -0.208 -0.142 -0.126 -0.087 0.005 -0.022 0.145 0.028 0.037 0.133 0.089 0.174 -0.090 0.025 0.039 -0.118 0.014 0.043 0.104 -0.013 0.000 0.083 0.051 -0.017 0.073 -0.023 -0.036 -326 -342 -345	GLM Balance CBPS GLM -0.060 -0.035 -0.063 -0.060 -0.208 -0.142 -0.126 -0.208 -0.087 0.005 -0.022 -0.087 0.145 0.028 0.037 0.145 0.133 0.089 0.174 0.133 -0.090 0.025 0.039 -0.090 -0.118 0.014 0.043 -0.118 0.104 -0.013 0.000 0.104 0.083 0.051 -0.017 0.083 0.073 -0.023 -0.036 0.073 -326 -342 -345 -293	GLM Balance CBPS GLM Balance -0.060 -0.035 -0.063 -0.060 -0.035 -0.208 -0.142 -0.126 -0.208 -0.142 -0.087 0.005 -0.022 -0.087 0.005 0.145 0.028 0.037 0.145 0.028 0.133 0.089 0.174 0.133 0.089 -0.090 0.025 0.039 -0.090 0.025 -0.118 0.014 0.043 -0.118 0.014 0.104 -0.013 0.000 0.104 -0.013 0.083 0.051 -0.017 0.083 0.051 0.073 -0.023 -0.036 0.073 -0.023 -326 -342 -345 -293 -307	GLM Balance CBPS GLM Balance CBPS -0.060 -0.035 -0.063 -0.060 -0.035 -0.063 -0.208 -0.142 -0.126 -0.208 -0.142 -0.126 -0.087 0.005 -0.022 -0.087 0.005 -0.022 0.145 0.028 0.037 0.145 0.028 0.037 0.133 0.089 0.174 0.133 0.089 0.174 -0.090 0.025 0.039 -0.090 0.025 0.039 -0.118 0.014 0.043 -0.118 0.014 0.043 0.104 -0.013 0.000 0.104 -0.013 0.000 0.083 0.051 -0.017 0.083 0.051 -0.017 0.073 -0.023 -0.036 0.073 -0.023 -0.036 -326 -342 -345 -293 -307 -297	GLM Balance CBPS GLM Balance CBPS GLM -0.060 -0.035 -0.063 -0.060 -0.035 -0.063 -0.031 -0.208 -0.142 -0.126 -0.208 -0.142 -0.126 -0.262 -0.087 0.005 -0.022 -0.087 0.005 -0.022 -0.082 0.145 0.028 0.037 0.145 0.028 0.037 0.171 0.133 0.089 0.174 0.133 0.089 0.174 0.189 -0.090 0.025 0.039 -0.090 0.025 0.039 -0.079 -0.118 0.014 0.043 -0.118 0.014 0.043 -0.120 0.104 -0.013 0.000 0.104 -0.013 0.000 0.061 0.083 0.051 -0.017 0.083 0.051 -0.017 0.059 0.073 -0.023 -0.036 0.073 -0.023 -0.036 0.099 -326	GLM Balance CBPS GLM Balance CBPS GLM Balance -0.060 -0.035 -0.063 -0.060 -0.035 -0.063 -0.031 0.035 -0.208 -0.142 -0.126 -0.208 -0.142 -0.126 -0.262 -0.168 -0.087 0.005 -0.022 -0.087 0.005 -0.022 -0.082 -0.032 0.145 0.028 0.037 0.145 0.028 0.037 0.171 0.031 0.133 0.089 0.174 0.133 0.089 0.174 0.189 0.095 -0.090 0.025 0.039 -0.090 0.025 0.039 -0.079 0.011 -0.118 0.014 0.043 -0.118 0.014 0.043 -0.120 -0.010 0.104 -0.013 0.000 0.104 -0.013 0.000 0.061 0.034 0.083 0.051 -0.017 0.083 0.051 -0.017 0.059 0.068

Extensions to Other Causal Inference Settings

- Propensity score methods are widely applicable
- This means that CBPS is also widely applicable
- Potential extensions:
 - Non-binary treatment regimes
 - Causal inference with longitudinal data
 - Generalizing experimental estimates
 - Generalizing instrumental variable estimates
- All of these are situations where balance checking is difficult

Non-binary Treatment Regimes

- Multi-valued treatment regime: $T_i \in \{0, 1, ..., K-1\}$
- Propensity scores: $\pi_{\beta}^{k}(X_{i}) = \Pr(T_{i} = k \mid X_{i})$
- Score equation: multinomial likelihood
- Balancing moment conditions:

$$\mathbb{E}\left\{\frac{\mathbf{1}\{T_i=k\}\widetilde{X}_i}{\pi_{\beta}^k(X_i)}-\frac{\mathbf{1}\{T_i=k-1\}\widetilde{X}_i}{\pi_{\beta}^{k-1}(X_i)}\right\} = 0$$

for each k = 1, ..., K - 1.

Generalizing Experimental Estimates

- Lack of external validity for experimental estimates
- Target population \mathcal{P}
- Experimental sample: $S_i = 1$ with $i = 1, 2, ..., N_e$
- Non-experimental sample: $S_i = 0$ with $i = N_e + 1, ..., N$
- Sampling on observables: $\{Y_i(1), Y_i(0)\} \perp \!\!\! \perp S_i \mid X_i$
- Propensity score: $\pi_{\beta}(X_i) = \Pr(S_i \mid X_i)$
- Weighted regression with the weight = $1/\pi_{\beta}(X_i)$
- Score equation: binomial likelihood
- Balancing between experimental and non-experimental sample:

$$\mathbb{E}\left\{\frac{S_i\widetilde{X}_i}{\pi_{\beta}(X_i)}-\frac{(1-S_i)\widetilde{X}_i}{1-\pi_{\beta}(X_i)}\right\} = 0$$

You may also balance weighted treatment and control groups

Causal Inference with Longitudinal Data

- Time-dependent confounding and time-varying treatments
- Notation:
 - N units
 - J time periods
 - Outcome Y_{ij}
 - Treatment: T_{ij}
 - Treatment history: $\overline{T}_{ij} = \{T_{i0}, T_{i1}, \dots, T_{ij}\}$
 - Covariates: X_{ij}
 - Covariate history: $\overline{X}_{ij} = \{X_{i0}, X_{i1}, \dots, X_{ij}\}$
- Assumption: Sequential ignorability

$$\{Y_{ij}(1), Y_{ij}(0)\} \perp T_{ij} \mid \overline{T}_{i,j-1}, \overline{X}_{ij}$$

Propensity score:

$$\pi_{\beta}(\overline{T}_{i,j-1},\overline{X}_{ij}) = \Pr(T_{ij} = 1 \mid \overline{T}_{i,j-1},\overline{X}_{ij})$$

Marginal Structural Models

• Weighted regression of Y_{ij} given \overline{T}_{ij} where the stabilized weight for unit i at time j is given by

$$w_{ij} = \frac{\prod_{j'=1}^{j} \Pr(T_j = T_{ij'} \mid \overline{T}_{j'-1} = \overline{T}_{i,j'-1})}{\prod_{j'=1}^{j} \pi_{\beta}(\overline{T}_{i,j-1}, \overline{X}_{ij})}$$

- ullet Do not adjust for \overline{X}_{ij} in outcome regression \Longrightarrow posttreatment bias
- Challenge: balance covariates at each time period
- The score equation: logistic regression
- The balancing moment conditions (for each time period *j*):

$$\mathbb{E}\left\{\frac{T_{ij}\widetilde{Z}_{ij}}{\pi_{\beta}(\overline{T}_{i,j-1}\overline{X}_{ij})}-\frac{(1-T_{ij})\widetilde{Z}_{ij}}{1-\pi_{\beta}(\overline{T}_{i,j-1},\overline{X}_{ij})}\right\} = 0$$

where
$$\overline{Z}_{ij} = f(\overline{T}_{i,j-1}, \overline{X}_{ij})$$

Review of Instrumental Variables (Angrist et al. *JASA*)

- Encouragement design
- Randomized encouragement: $Z_i \in \{0, 1\}$
- Potential treatment variables: $T_i(z)$ for z = 0, 1
- Four principal strata (latent types):
 - compliers $(T_i(1), T_i(0)) = (1, 0),$ • non-compliers $\begin{cases} always - takers & (T_i(1), T_i(0)) = (1, 1), \\ never - takers & (T_i(1), T_i(0)) = (0, 0), \\ defiers & (T_i(1), T_i(0)) = (0, 1) \end{cases}$
- Observed and principal strata:

$$Z_i = 1$$
 $Z_i = 0$
 $T_i = 1$ Complier/Always-taker Defier/Always-taker
 $T_i = 0$ Defier/Never-taker Complier/Never-taker

- Randomized encouragement as an instrument for the treatment
- Two additional assumptions
 - Monotonicity: No defiers

$$T_i(1) \geq T_i(0)$$
 for all i .

Exclusion restriction: Instrument (encouragement) affects outcome only through treatment

$$Y_i(1,t) = Y_i(0,t)$$
 for $t = 0, 1$

Zero ITT effect for always-takers and never-takers

• ITT effect decomposition:

$$ITT = ITT_c \times Pr(compliers) + ITT_a \times Pr(always - takers) + ITT_n \times Pr(never - takers)$$
$$= ITT_c Pr(compliers)$$

Complier average treatment effect or (LATE):
 ITT_c = ITT / Pr(compliers)

Generalizing Instrumental Variables Estimates

- Compliers may not be of interest
 - They are a latent type
 - They depend on the encouragement
- Generalize LATE to ATE
- No unmeasured confounding: ATE = LATE given X_i
- Propensity score: $\pi_{\beta}(X_i) = \Pr(C_i = c \mid X_i)$
- Weighted two-stage least squares with the weight = $1/\pi_{\beta}(X_i)$
- Score equation is based on the mixture likelihood:
- Balancing moment conditions: weight each of the four cells and balance moments across them

Concluding Remarks

- Covariate balancing propensity score:
 - simultaneously optimizes prediction of treatment assignment and covariate balance under the GMM framework
 - is robust to model misspecification
 - improves propensity score weighting and matching methods
 - can be extended to various situations
- Open questions:
 - Empirical performance of proposed extensions
 - 2 How to choose model specifications and balancing conditions
- Open-source software in development