Causal Inference with Interference and Noncompliance in Two-Stage Randomized Controlled Trials

Kosuke Imai Zhichao Jiang Anup Malani

Harvard Princeton Chicago

Annual Meeting of the American Political Science Association

August 30, 2018

Methodological Motivation: Two-stage RCTs

- Causal inference revolution over the last three decades

- In social sciences, interference is the rule rather than the exception
- Significant methodological progress over the last decade
- Experimental solution: two-stage randomized controlled trials (Hudgens and Halloran, 2008)
- We consider interference, both from encouragement to treatment and from treatment to outcome, in the presence of noncompliance

Empirical Motivation: Indian Health Insurance Experiment

 What are the health and financial effects of expanding a national health insurance program?

- RSBY (Rashtriya Swasthya Bima Yojana) subsidizes health insurance for "below poverty line" (BPL) Indian households
- We conduct an RCT to evaluate the impact of expanding RSBY to non-poor (i.e., APL or above poverty line) households in Karnakata

Does health insurance have spillover effects on non-beneficiaries?

Study Design

- Sample: 10,879 households in 435 villages
- Experimental conditions:
 - opportunity to enroll in RSBY essentially for free
 - No intervention
- Time line:
 - September 2013 February 2014: Baseline survey
 - 2 April May 2015: Enrollment
 - September 2016 January 2017: Endline survey
- Two stage randomization:

Mechanisms	Village prop.	Treatment	Control
High	50%	80%	20%
Low	50%	40%	60%

Potential Outcomes Framework

- Individuals (households): i = 1, 2, ..., N
- Blocks (villages): $j = 1, 2, \dots, J$
- Size of block j: n_j where $N = \sum_{j=1}^J n_j$
- Binary treatment assignment mechanism: $A_j \in \{0,1\}$
- Binary encouragement to receive treatment: $Z_{ij} \in \{0,1\}$
- Binary treatment indicator: $D_{ij} \in \{0,1\}$
- Observed outcome: Y_{ii}
- Partial interference assumption: No interference across blocks
 - Potential treatment and outcome: $D_{ij}(\mathbf{z}_j)$ and $Y_{ij}(\mathbf{z}_j)$
 - ullet Observed treatment and outcome: $D_{ij} = D_{ij}(\mathbf{Z}_j)$ and $Y_{ij} = Y_{ij}(\mathbf{Z}_j)$
- Number of potential values reduced from 2^N to 2^{n_j}

Intention-to-Treat Analysis: Causal Quantities of Interest

• Average outcome under the treatment $Z_{ij} = z$ and the assignment mechanism $A_i = a$:

$$\overline{Y}_{ij}(z,a) = \sum_{\mathbf{z}_{-i,i}} Y_{ij}(Z_{ij} = z, \mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)$$

• Average direct effect of encouragement on outcome:

$$ADE^{Y}(a) = \frac{1}{N} \sum_{i=1}^{J} \sum_{j=1}^{n_{j}} \left\{ \overline{Y}_{ij}(1, a) - \overline{Y}_{ij}(0, a) \right\}$$

• Average spillover effect of encouragement on outcome:

$$\mathsf{ASE}^{\mathsf{Y}}(z) = \frac{1}{N} \sum_{i=1}^{J} \sum_{j=1}^{n_j} \left\{ \overline{Y}_{ij}(z,1) - \overline{Y}_{ij}(z,0) \right\}$$

Horvitz-Thompson estimator for unbiased estimation

Complier Average Direct Effect

- Goal: Estimate the treatment effect rather than the ITT effect
- Use randomized encouragement as an instrument
 - **1** Monotonicity: $D_{ij}(1, \mathbf{z}_{-i,j}) \geq D_{ij}(0, \mathbf{z}_{-i,j})$ for any $\mathbf{z}_{-i,j}$
 - **2** Exclusion restriction: $Y_{ij}(\mathbf{z}_j, \mathbf{d}_j) = Y_{ij}(\mathbf{z}'_j, \mathbf{d}_j)$ for any \mathbf{z}_j and \mathbf{z}'_j
- Compliers: $C_{ij}(\mathbf{z}_{-i,j}) = \mathbf{1}\{D_{ij}(1,\mathbf{z}_{-i,j}) = 1, D_{ij}(0,\mathbf{z}_{-i,j}) = 0\}$
- Complier average direct effect of encouragement (CADE(z, a)):

$$\frac{\sum_{j=1}^{J} \sum_{i=1}^{n_{j}} \{Y_{ij}(1, \mathbf{z}_{-i,j}) - Y_{ij}(0, \mathbf{z}_{-i,j})\} C_{ij}(\mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)}{\sum_{j=1}^{J} \sum_{i=1}^{n_{j}} C_{ij}(\mathbf{z}_{-i,j}) \mathbb{P}_{a}(\mathbf{Z}_{-i,j} = \mathbf{z}_{-i,j} \mid Z_{ij} = z)}$$

We propose a consistent estimator of the CADE

Key Identification Assumption

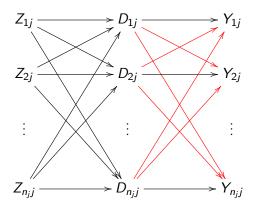
- Two causal mechanisms:
 - Z_{ij} affects Y_{ij} through D_{ij}
 - Z_{ij} affects Y_{ij} through $\mathbf{D}_{-i,j}$
- ullet Idea: if Z_{ij} does not affect D_{ij} , it should not affect Y_{ij} through $oldsymbol{D}_{-i,j}$

Assumption (Restricted Interference for Noncompliers)

If a unit has $D_{ij}(1, \mathbf{z}_{-i,j}) = D_{ij}(0, \mathbf{z}_{-i,j}) = d$ for any given $\mathbf{z}_{-i,j}$, it must also satisfy $Y_{ij}(d, \mathbf{D}_{-i,j}(Z_{ij} = 1, \mathbf{z}_{-i,j})) = Y_{ij}(d, \mathbf{D}_{-i,j}(Z_{ij} = 0, \mathbf{z}_{-i,j}))$

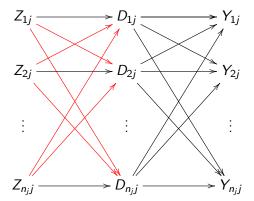
Scenario I: No Spillover Effect of the Treatment Receipt on the Outcome

$$Y_{ij}(d_{ij},\mathbf{d}_{-i,j}) = Y_{ij}(d_{ij},\mathbf{d}'_{-i,j})$$



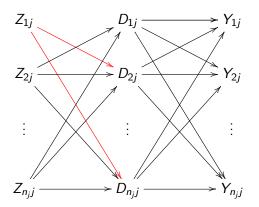
Scenario II: No Spillover Effect of the Treatment Assignment on the Treatment Receipt

$$D_{ij}(z_{ij}, \mathbf{z}_{-i,j}) = D_{ij}(z_{ij}, \mathbf{z}'_{-i,j})$$
 (Kang and Imbens, 2016)



Scenario III: Limited Spillover Effect of the Treatment Assignment on the Treatment Receipt

If
$$D_{ij}(1, \mathbf{z}_{-i,j}) = D_{ij}(0, \mathbf{z}_{-i,j})$$
 for any given $\mathbf{z}_{-i,j}$,
then $D_{i'j}(1, \mathbf{z}_{-i,j}) = D_{i'j}(0, \mathbf{z}_{-i,j})$ for all $i' \neq i$



Identification, Estimation, and Inference

Identification: monotonicity, exclusion restriction, restricted interference for noncompliers

$$\lim_{n_j \to \infty} \mathsf{CADE}(z, a) = \lim_{n_j \to \infty} \frac{\mathsf{ADE}^{Y}(a)}{\mathsf{ADE}^{D}(a)}$$

 Consistent estimation: additional restriction on interference (e.g., Savje et al.)

$$\frac{\widehat{\mathsf{ADE}}^Y(a)}{\widehat{\mathsf{ADE}}^D(a)} \stackrel{p}{\longrightarrow} \lim_{n_j \to \infty, J \to \infty} \mathsf{CADE}(z, a)$$

Randomization inference: stratified interference

Connection to the Two-stage Least Squares Estimator

• The model:

$$Y_{ij} = \sum_{a=0}^{1} \alpha_{a} \mathbf{1} \{ A_{j} = a \} + \sum_{a=0}^{1} \underbrace{\beta_{a}}_{CADE} D_{ij} \mathbf{1} \{ A_{j} = a \} + \epsilon_{ij}$$

$$D_{ij} = \sum_{a=0}^{1} \gamma_{a} \mathbf{1} \{ A_{j} = a \} + \sum_{a=0}^{1} \underbrace{\delta_{a}}_{ADE} Z_{ij} \mathbf{1} \{ A_{j} = a \} + \eta_{ij}$$

Weighted two-stage least squares estimator:

$$w_{ij} = \frac{1}{\Pr(A_j) \Pr(Z_{ij} \mid A_j)}$$

- ullet Transforming the outcome and treatment: multiplying them by $n_j J/N$
- Randomization-based variance is equal to the weighted average of cluster-robust HC2 and individual-robust HC2 variances

Results: Indian Health Insurance Experiment

 A household is more likely to enroll in RSBY if a large number of households are given the opportunity

Average Spillover Effects	Treatment	Control
Individual-weighted	0.086 (s.e. = 0.053)	0.045 (s.e. = 0.028)
Block-weighted	0.044 (s.e. = 0.018)	0.031 (s.e. = 0.021)

Households will use hospitals more if few households are given the opportunity

Complier Average Direct Effects	High	Low
Individual-weighted	-1649 (s.e. $=1061$)	1984 (s.e. = 1215)
Block-weighted	-485 (s.e. $=1258$)	3752 (s.e. = 1652)

Concluding Remarks

- In social science research,
 - people interact with each other \(\simes \) interference
 - ② people don't follow instructions → noncompliance
- Two-stage randomized controlled trials:
 - 1 randomize assignment mechanisms across clusters
 - 2 randomize treatment assignment within each cluster
- Our contributions:
 - Identification condition for complier average direct effects
 - 2 Consistent estimator for CADE and its variance
 - Onnections to regression and instrumental variables
 - 4 Application to the India health insurance experiment
 - Implementation as part of R package experiment

Send comments and suggestions to Imai@Harvard.Edu