Discussion: Can We Get More Out of Experiments?

Kosuke Imai

Princeton University

September 4, 2010

Keele, McConnaughy, and White

- Question: Can we gain efficiency by adjusting experimental data after the experiment is done?
- KMW's Answer: Yes, use matching rather than regression
 - Much weaker functional-form assumption
 - ② Can detect the lack of common support
 - Less data snooping
- Disadvantages (acknowledged by KMW):
 - May create imbalance in unobservables
 - No design-based variance calculation
- KMW's proposal: report both unadjusted and adjusted estimates
- Adjust or not Adjust?: contribution to the important but controversial debate in the literature

Covariate Adjustments in Experiments

- Pre-randomization adjustments are gold standard
- Blocking never hurts (Imai, King & Stuart, 2008)
- Matching can hurt, but in practice it seems to work very well
- When post-randomization adjustments are desirable?
- Covariates are unavailable before randomization AND low power
 - Model-based variance calculation: this may be fine but not clear how to compare it with design-based variance
 - Risk of data snooping is always there
 - Which one do you trust if adjusted and unadjusted estimates are different?
- Some comments about details:
 - **)** Asymptotics: $\overline{T} \rightarrow 0$? maybe just refer to Freedman
 - Simulation: Need to account for randomization?
 - Randomization test: broken randomization?
 - Empirical results: unadjusted -0.00(0.822), with replacement
 - -1.25(0.039), without replacement -0.25(0.803)

Another Motivation for Covariate Adjustments

- Quantities of interest go beyond ATE
- Heterogenous treatment effects
 - Useful for testing substantive theory
 - Oseful for policy-makers
- Growing methodological literature:
 - Tree-based methods (Imai and Strauss)
 - 2 Generalized additive models (Feller and Holmes)
 - Bayesian Additive Regression Trees (Green and Kern)
- Key challenge: avoid post-hoc subgroup analysis problem
- Regularization is required
 - Cross-validation
 - Bayesian prior
 - Penalty function
- Using treatment effect heterogeneity to generalize experimental results to a larger population

Hartman, Grieve, and Sekhon

- Disadvantage of randomized experiments: external validity
- Question: How do we extrapolate from SATT to PATT?
- HGS's solution:
 - Estimate heterogenous treatment effects via matching
 - Weight pairs to match the population distribution
 - Use placebo tests if possible
- Application to Pulmonary Artery Catheterization (PAC)
- Overall, a nice idea with an interesting application
- Some remaining issues:
 - Variable selection problem: How should one choose variables to include in matching/weighting?
 - Multiple testing problem with placebo tests
 - Variance calculation is no longer randomization-based
- Suggestion: Use HGS's method with pre-randomization matching

- Clarifying the identifying assumption:
 - Sample selection based on observables
 - Possibilities of unobserved confounders
- Bias decomposition:
 - Maybe helpful to decompose them into sample selection bias due to observables and unobservables
 - Should be expressed using potential outcomes, not $\mathbb{E}(Y_i \mid W, T_i = 1, I = 1)$ etc.
- Variance calculation:
 - Abadie & Imbens standard errors for SATE/SATT
 - What about PATT? Sometimes PATT has smaller standard error than SATT. Additional uncertainty due to sampling from population

Green and Kern

- Goal: Evaluate the performance of several competing estimators for generalizing SATE to PATE using Monte Carlo simulations
- Six methods
 - Difference-in-means
 - 2 Linear regression with step-wise variable selection
 - Inverse probability weighting (IPW)
 - Genetic matching with maximum entropy weighting
 - Bayesian Additive Regression Trees (BART)
- Use of realistic simulation settings based on GSS
- Linear, nonlinear response surfaces, confounded and unconfounded
- Findings:
 - The difference-in-means is the worst
 - BART often does better than the others
- Important contribution given the growing interest in the topic (Stuart et al.; Hartman et al.)

What Does Explain the Findings?

- No surprise that the diff-in-means performs badly
- No surprise that linear regression does badly
- Why does IPW do worse than BART?
 - IPW used here is parametric
 - Stabilized weights could be used
- Why does MaxEnt do worse then BART?
 - Common support assumption is satisfied
 - No variable selection for MaxEnt?
- Need for theoretical understanding about the conditions under which each model does and does not work well
- Report bias and efficiency rather than MSE

Back to the Common Theme

- Original question: Can we get more out of experiments?
- Yes, but be careful and use appropriate statistical tools
- Efficiency gain by pre-treatment covariate adjustments
- Post-treatment covariate adjustments require a greater care
 - Avoid post-hoc adjustment
 - Variable and model selection issues
 - Variance calculation
- Going beyond the SATE
- Heterogenous treatment effects and Extrapolation
 - Avoid post-hoc subgroup analysis problem
 - Variable and model selection
 - Sample selection based on unobservables
- Experiments vs. observational studies and central role of statistics
 - Internal vs. external validity
 - Small vs. large data sets